Merge branch 'main' into psram-alloc

This commit is contained in:
2025-10-14 12:43:26 -06:00
47 changed files with 4357 additions and 652 deletions

93
kernel/Cargo.toml Normal file
View File

@@ -0,0 +1,93 @@
[package]
name = "kernel"
version = "0.0.1"
edition = "2024"
[[bin]]
name = "kernel"
path = "src/main.rs"
test = false
doctest = false
bench = false
[features]
default = ["rp235x", "defmt"]
rp2040 = ["embassy-rp/rp2040"]
rp235x = ["embassy-rp/rp235xb"]
trouble = ["dep:bt-hci", "dep:cyw43", "dep:cyw43-pio", "dep:trouble-host"]
defmt = [
"dep:defmt",
"panic-probe/print-defmt",
"embassy-executor/defmt",
"embassy-time/defmt",
"embassy-time/defmt-timestamp-uptime",
"embassy-rp/defmt",
"embassy-sync/defmt",
"embedded-graphics/defmt",
"embedded-sdmmc/defmt-log",
# "bt-hci/defmt",
# "cyw43/defmt",
# "cyw43-pio/defmt",
]
[dependencies]
embassy-executor = { version = "0.9", features = [
"arch-cortex-m",
"executor-interrupt",
"executor-thread",
"nightly",
] }
embassy-rp = { version = "0.8.0", features = [
"critical-section-impl",
"unstable-pac",
"time-driver",
] }
embassy-usb = "0.5.1"
embassy-futures = "0.1.2"
embassy-time = { version = "0.5.0", features = ["generic-queue-8"] }
embassy-embedded-hal = "0.3.2"
embassy-sync = { version = "0.7" }
trouble-host = { version = "0.1", features = [
"derive",
"scan",
], optional = true }
bt-hci = { version = "0.2", default-features = false, optional = true }
cyw43 = { version = "0.3.0", features = [
"firmware-logs",
"bluetooth",
], optional = true }
cyw43-pio = { version = "0.3.0", optional = true }
embedded-hal-bus = { version = "0.3.0", features = ["async"] }
embedded-hal = "0.2.7"
embedded-hal_2 = { package = "embedded-hal", version = "1.0.0" }
embedded-hal-async = "1.0.0"
cortex-m = { version = "0.7.7" }
cortex-m-rt = "0.7.5"
panic-probe = "0.3"
portable-atomic = { version = "1.11", features = ["critical-section"] }
assign-resources = "0.5.0"
defmt = { version = "0.3", optional = true }
defmt-rtt = "0.4.2"
embedded-sdmmc = { version = "0.9", default-features = false }
st7365p-lcd = { git = "https://github.com/legitcamper/st7365p-lcd-rs", rev = "a784b9e6df0769371dfc522528e770cf8fc6403a" } # async branch
embedded-graphics = { version = "0.8.1" }
embedded-text = "0.7.2"
embedded-layout = "0.4.2"
kolibri-embedded-gui = "0.1.0"
strum = { version = "0.27.2", default-features = false }
rand = { version = "0.9.0", default-features = false }
once_cell = { version = "1.21.3", default-features = false }
static_cell = "2.1.1"
bitflags = "2.9.4"
heapless = "0.8.0"
spin = "0.10.0"
num_enum = { version = "0.7.4", default-features = false }
goblin = { version = "0.10.1", default-features = false, features = ["elf32"] }
talc = "4.4.3"
bumpalo = "3.19.0"
abi_sys = { path = "../abi_sys" }

35
kernel/build.rs Normal file
View File

@@ -0,0 +1,35 @@
//! This build script copies the `memory.x` file from the crate root into
//! a directory where the linker can always find it at build time.
//! For many projects this is optional, as the linker always searches the
//! project root directory -- wherever `Cargo.toml` is. However, if you
//! are using a workspace or have a more complicated build setup, this
//! build script becomes required. Additionally, by requesting that
//! Cargo re-run the build script whenever `memory.x` is changed,
//! updating `memory.x` ensures a rebuild of the application with the
//! new memory settings.
use std::env;
use std::fs::File;
use std::io::Write;
use std::path::PathBuf;
fn main() {
// Put `memory.x` in our output directory and ensure it's
// on the linker search path.
let out = &PathBuf::from(env::var_os("OUT_DIR").unwrap());
File::create(out.join("memory.x"))
.unwrap()
.write_all(include_bytes!("memory.x"))
.unwrap();
println!("cargo:rustc-link-search={}", out.display());
// By default, Cargo will re-run a build script whenever
// any file in the project changes. By specifying `memory.x`
// here, we ensure the build script is only re-run when
// `memory.x` is changed.
println!("cargo:rerun-if-changed=memory.x");
println!("cargo:rustc-link-arg-bins=--nmagic");
println!("cargo:rustc-link-arg-bins=-Tlink.x");
println!("cargo:rustc-link-arg-bins=-Tdefmt.x");
}

60
kernel/memory.x Normal file
View File

@@ -0,0 +1,60 @@
MEMORY {
FLASH : ORIGIN = 0x10000000, LENGTH = 4096K
RAM : ORIGIN = 0x20000000, LENGTH = 512K
SRAM4 : ORIGIN = 0x20080000, LENGTH = 4K
SRAM5 : ORIGIN = 0x20081000, LENGTH = 4K
}
SECTIONS {
/* ### Boot ROM info
*
* Goes after .vector_table, to keep it in the first 4K of flash
* where the Boot ROM (and picotool) can find it
*/
.start_block : ALIGN(4)
{
__start_block_addr = .;
KEEP(*(.start_block));
KEEP(*(.boot_info));
} > FLASH
} INSERT AFTER .vector_table;
/* move .text to start /after/ the boot info */
_stext = ADDR(.start_block) + SIZEOF(.start_block);
SECTIONS {
/* ### Picotool 'Binary Info' Entries
*
* Picotool looks through this block (as we have pointers to it in our
* header) to find interesting information.
*/
.bi_entries : ALIGN(4)
{
/* We put this in the header */
__bi_entries_start = .;
/* Here are the entries */
KEEP(*(.bi_entries));
/* Keep this block a nice round size */
. = ALIGN(4);
/* We put this in the header */
__bi_entries_end = .;
} > FLASH
} INSERT AFTER .text;
SECTIONS {
/* ### Boot ROM extra info
*
* Goes after everything in our program, so it can contain a signature.
*/
.end_block : ALIGN(4)
{
__end_block_addr = .;
KEEP(*(.end_block));
} > FLASH
} INSERT AFTER .uninit;
PROVIDE(start_to_end = __end_block_addr - __start_block_addr);
PROVIDE(end_to_start = __start_block_addr - __end_block_addr);

224
kernel/src/abi.rs Normal file
View File

@@ -0,0 +1,224 @@
use abi_sys::{
CPixel, DrawIterAbi, FileLen, GenRand, GetMsAbi, ListDir, LockDisplay, PrintAbi, ReadFile,
RngRequest, SleepMsAbi, keyboard::*,
};
use alloc::{string::ToString, vec::Vec};
use core::sync::atomic::Ordering;
use embassy_rp::clocks::{RoscRng, clk_sys_freq};
use embassy_time::Instant;
use embedded_graphics::draw_target::DrawTarget;
use embedded_sdmmc::{DirEntry, LfnBuffer};
use heapless::spsc::Queue;
use crate::{
display::{FB_PAUSED, FRAMEBUFFER},
storage::{Dir, File, SDCARD},
};
const _: PrintAbi = print;
pub extern "C" fn print(ptr: *const u8, len: usize) {
// SAFETY: caller guarantees `ptr` is valid for `len` bytes
let slice = unsafe { core::slice::from_raw_parts(ptr, len) };
if let Ok(msg) = core::str::from_utf8(slice) {
defmt::info!("print: {}", msg);
} else {
defmt::warn!("print: <invalid utf8>");
}
}
const _: SleepMsAbi = sleep;
pub extern "C" fn sleep(ms: u64) {
let cycles_per_ms = clk_sys_freq() / 1000;
let total_cycles = ms * cycles_per_ms as u64;
for _ in 0..total_cycles {
cortex_m::asm::nop();
}
}
pub static mut MS_SINCE_LAUNCH: Option<Instant> = None;
const _: GetMsAbi = get_ms;
pub extern "C" fn get_ms() -> u64 {
Instant::now()
.duration_since(unsafe { MS_SINCE_LAUNCH.unwrap() })
.as_millis()
}
const _: LockDisplay = lock_display;
pub extern "C" fn lock_display(lock: bool) {
FB_PAUSED.store(lock, Ordering::Relaxed);
}
const _: DrawIterAbi = draw_iter;
// TODO: maybe return result
pub extern "C" fn draw_iter(cpixels: *const CPixel, len: usize) {
// SAFETY: caller guarantees `ptr` is valid for `len` bytes
let cpixels = unsafe { core::slice::from_raw_parts(cpixels, len) };
let iter = cpixels.iter().copied().map(|c: CPixel| c.into());
unsafe { FRAMEBUFFER.draw_iter(iter).unwrap() }
}
pub static mut KEY_CACHE: Queue<KeyEvent, 32> = Queue::new();
const _: GetKeyAbi = get_key;
pub extern "C" fn get_key() -> KeyEventC {
if let Some(event) = unsafe { KEY_CACHE.dequeue() } {
event.into()
} else {
KeyEvent {
key: KeyCode::Unknown(0),
state: KeyState::Idle,
mods: Modifiers::empty(),
}
.into()
}
}
const _: GenRand = gen_rand;
pub extern "C" fn gen_rand(req: &mut RngRequest) {
let mut rng = RoscRng;
match req {
RngRequest::U32(i) => *i = rng.next_u32(),
RngRequest::U64(i) => *i = rng.next_u64(),
RngRequest::Bytes { ptr, len } => {
// SAFETY: caller guarantees `ptr` is valid for `len` bytes
let slice: &mut [u8] = unsafe { core::slice::from_raw_parts_mut(*ptr, *len) };
rng.fill_bytes(slice);
}
}
}
fn get_dir_entries(dir: &Dir, files: &mut [Option<DirEntry>]) -> usize {
let mut i = 0;
dir.iterate_dir(|entry| {
if i < files.len() {
files[i] = Some(entry.clone());
i += 1;
}
})
.unwrap();
i
}
fn recurse_dir(dir: &Dir, dirs: &[&str], files: &mut [Option<DirEntry>]) -> usize {
if dirs.is_empty() {
return get_dir_entries(dir, files);
}
let dir = dir.open_dir(dirs[0]).unwrap();
recurse_dir(&dir, &dirs[1..], files)
}
const _: ListDir = list_dir;
pub extern "C" fn list_dir(
dir: *const u8,
len: usize,
files: *mut Option<DirEntry>,
files_len: usize,
) -> usize {
// SAFETY: caller guarantees `ptr` is valid for `len` bytes
let files = unsafe { core::slice::from_raw_parts_mut(files, files_len) };
// SAFETY: caller guarantees `ptr` is valid for `len` bytes
let dir = unsafe { core::str::from_raw_parts(dir, len) };
let dirs: Vec<&str> = dir.split('/').collect();
let mut guard = SDCARD.get().try_lock().expect("Failed to get sdcard");
let sd = guard.as_mut().unwrap();
let mut wrote = 0;
sd.access_root_dir(|root| {
if dirs[0] == "" && dirs.len() >= 2 {
if dir == "/" {
wrote = get_dir_entries(&root, files);
} else {
wrote = recurse_dir(&root, &dirs[1..], files);
}
}
});
wrote
}
fn recurse_file<T>(
dir: &Dir,
dirs: &[&str],
mut access: impl FnMut(&mut File) -> T,
) -> Result<T, ()> {
if dirs.len() == 1 {
let mut b = [0_u8; 50];
let mut buf = LfnBuffer::new(&mut b);
let mut short_name = None;
dir.iterate_dir_lfn(&mut buf, |entry, name| {
if let Some(name) = name {
if name == dirs[0] || entry.name.to_string().as_str() == dirs[0] {
short_name = Some(entry.name.clone());
}
}
})
.unwrap();
if let Some(name) = short_name {
let mut file = dir
.open_file_in_dir(name, embedded_sdmmc::Mode::ReadWriteAppend)
.map_err(|_| ())?;
return Ok(access(&mut file));
}
return Err(());
}
let dir = dir.open_dir(dirs[0]).unwrap();
recurse_file(&dir, &dirs[1..], access)
}
const _: ReadFile = read_file;
pub extern "C" fn read_file(
str: *const u8,
len: usize,
start_from: usize,
buf: *mut u8,
buf_len: usize,
) -> usize {
// SAFETY: caller guarantees `ptr` is valid for `len` bytes
let file = unsafe { core::str::from_raw_parts(str, len) };
let file: Vec<&str> = file.split('/').collect();
// SAFETY: caller guarantees `ptr` is valid for `len` bytes
let mut buf = unsafe { core::slice::from_raw_parts_mut(buf, buf_len) };
let mut read = 0;
let mut guard = SDCARD.get().try_lock().expect("Failed to get sdcard");
let sd = guard.as_mut().unwrap();
if !file.is_empty() {
sd.access_root_dir(|root| {
if let Ok(result) = recurse_file(&root, &file[1..], |file| {
file.seek_from_start(start_from as u32).unwrap();
file.read(&mut buf).unwrap()
}) {
read = result
};
});
}
read
}
const _: FileLen = file_len;
pub extern "C" fn file_len(str: *const u8, len: usize) -> usize {
// SAFETY: caller guarantees `ptr` is valid for `len` bytes
let file = unsafe { core::str::from_raw_parts(str, len) };
let file: Vec<&str> = file.split('/').collect();
let mut len = 0;
let mut guard = SDCARD.get().try_lock().expect("Failed to get sdcard");
let sd = guard.as_mut().unwrap();
if !file.is_empty() {
sd.access_root_dir(|root| {
if let Ok(result) = recurse_file(&root, &file[1..], |file| file.length()) {
len = result
}
});
}
len as usize
}

64
kernel/src/display.rs Normal file
View File

@@ -0,0 +1,64 @@
use core::sync::atomic::{AtomicBool, Ordering};
use crate::framebuffer::AtomicFrameBuffer;
use embassy_rp::{
Peri,
gpio::{Level, Output},
peripherals::{PIN_13, PIN_14, PIN_15, SPI1},
spi::{Async, Spi},
};
use embassy_time::{Delay, Timer};
use embedded_hal_bus::spi::ExclusiveDevice;
use st7365p_lcd::ST7365P;
type DISPLAY = ST7365P<
ExclusiveDevice<Spi<'static, SPI1, Async>, Output<'static>, Delay>,
Output<'static>,
Output<'static>,
Delay,
>;
pub const SCREEN_WIDTH: usize = 320;
pub const SCREEN_HEIGHT: usize = 320;
pub static mut FRAMEBUFFER: AtomicFrameBuffer = AtomicFrameBuffer::new();
pub static FB_PAUSED: AtomicBool = AtomicBool::new(false);
pub async fn init_display(
spi: Spi<'static, SPI1, Async>,
cs: Peri<'static, PIN_13>,
data: Peri<'static, PIN_14>,
reset: Peri<'static, PIN_15>,
) -> DISPLAY {
let spi_device = ExclusiveDevice::new(spi, Output::new(cs, Level::Low), Delay).unwrap();
let mut display = ST7365P::new(
spi_device,
Output::new(data, Level::Low),
Some(Output::new(reset, Level::High)),
false,
true,
Delay,
);
display.init().await.unwrap();
display.set_custom_orientation(0x40).await.unwrap();
unsafe { FRAMEBUFFER.draw(&mut display).await.unwrap() }
display.set_on().await.unwrap();
display
}
#[embassy_executor::task]
pub async fn display_handler(mut display: DISPLAY) {
loop {
if !FB_PAUSED.load(Ordering::Acquire) {
unsafe {
FRAMEBUFFER
.partial_draw_batched(&mut display)
.await
.unwrap()
}
}
Timer::after_millis(10).await;
}
}

277
kernel/src/elf.rs Normal file
View File

@@ -0,0 +1,277 @@
use crate::{
abi,
storage::{File, SDCARD},
};
use abi_sys::CallAbiTable;
use abi_sys::EntryFn;
use alloc::{vec, vec::Vec};
use bumpalo::Bump;
use core::ptr;
use embedded_sdmmc::ShortFileName;
use goblin::{
elf::{
header::header32::Header,
program_header::program_header32::{PT_LOAD, ProgramHeader},
reloc::R_ARM_RELATIVE,
section_header::{SHT_REL, SHT_SYMTAB},
},
elf32::{header, reloc::Rel, section_header::SectionHeader, sym::Sym},
};
use strum::IntoEnumIterator;
const ELF32_HDR_SIZE: usize = 52;
pub async unsafe fn load_binary(name: &ShortFileName) -> Option<(EntryFn, Bump)> {
let mut sd_lock = SDCARD.get().lock().await;
let sd = sd_lock.as_mut().unwrap();
let mut header_buf = [0; ELF32_HDR_SIZE];
let (entry, bump) = sd
.read_file(name, |mut file| {
file.read(&mut header_buf).unwrap();
let elf_header = Header::from_bytes(&header_buf);
// reject non-PIE
if elf_header.e_type != header::ET_DYN {
return None;
}
let mut ph_buf = vec![0_u8; elf_header.e_phentsize as usize];
let (total_size, min_vaddr, _max_vaddr) =
total_loadable_size(&mut file, &elf_header, &mut ph_buf);
let bump = Bump::with_capacity(total_size);
let base = bump.alloc_slice_fill_default::<u8>(total_size);
// load each segment into bump, relative to base_ptr
for i in 0..elf_header.e_phnum {
file.seek_from_start(elf_header.e_phoff + (elf_header.e_phentsize * i) as u32)
.unwrap();
file.read(&mut ph_buf).unwrap();
let ph = cast_phdr(&ph_buf);
let seg_offset = (ph.p_vaddr - min_vaddr) as usize;
let mut segment = &mut base[seg_offset..seg_offset + ph.p_memsz as usize];
if ph.p_type == PT_LOAD {
load_segment(&mut file, &ph, &mut segment).unwrap();
}
}
for i in 0..elf_header.e_shnum {
let sh = read_section(&mut file, elf_header, i.into());
match sh.sh_type {
SHT_REL => {
apply_relocations(&sh, min_vaddr, base.as_mut_ptr(), &mut file).unwrap();
}
_ => {}
}
}
patch_abi(&elf_header, base.as_mut_ptr(), min_vaddr, &mut file).unwrap();
// entry pointer is base_ptr + (entry - min_vaddr)
let entry_ptr: EntryFn = unsafe {
core::mem::transmute(base.as_ptr().add((elf_header.e_entry - min_vaddr) as usize))
};
Some((entry_ptr, bump))
})
.await
.expect("Failed to read file")?;
Some((entry, bump))
}
fn load_segment(file: &mut File, ph: &ProgramHeader, segment: &mut [u8]) -> Result<(), ()> {
let filesz = ph.p_filesz as usize;
let memsz = ph.p_memsz as usize;
// read file contents
let mut remaining = filesz;
let mut dst_offset = 0;
let mut file_offset = ph.p_offset;
let mut buf = [0u8; 512];
while remaining > 0 {
let to_read = core::cmp::min(remaining, buf.len());
file.seek_from_start(file_offset).unwrap();
file.read(&mut buf[..to_read]).unwrap();
segment[dst_offset..dst_offset + to_read].copy_from_slice(&buf[..to_read]);
remaining -= to_read;
dst_offset += to_read;
file_offset += to_read as u32;
}
// zero BSS if needed
if memsz > filesz {
segment[filesz..].fill(0);
}
Ok(())
}
fn apply_relocations(
sh: &SectionHeader,
min_vaddr: u32,
base: *mut u8,
file: &mut File,
) -> Result<(), ()> {
let mut reloc = [0_u8; 8];
let num_relocs = sh.sh_size as usize / sh.sh_entsize as usize;
for i in 0..num_relocs {
file.seek_from_start(sh.sh_offset + (i as u32 * 8)).unwrap();
file.read(&mut reloc).unwrap();
let rel = cast_rel(&reloc);
let reloc_type = rel.r_info & 0xff;
let reloc_addr = unsafe { base.add((rel.r_offset - min_vaddr) as usize) as *mut u32 };
match reloc_type {
R_ARM_RELATIVE => {
// REL: add base to the word already stored there
unsafe {
let val = ptr::read_unaligned(reloc_addr);
ptr::write_unaligned(reloc_addr, val.wrapping_add(base as u32));
}
}
_ => {
return Err(());
}
}
}
Ok(())
}
fn patch_abi(
elf_header: &Header,
base: *mut u8,
min_vaddr: u32,
file: &mut File,
) -> Result<(), ()> {
for i in 1..=elf_header.e_shnum {
let sh = read_section(file, &elf_header, i.into());
// find the symbol table
if sh.sh_type == SHT_SYMTAB {
let mut symtab_buf = vec![0u8; sh.sh_size as usize];
file.seek_from_start(sh.sh_offset).unwrap();
file.read(&mut symtab_buf).unwrap();
// Cast buffer into symbols
let sym_count = sh.sh_size as usize / sh.sh_entsize as usize;
for i in 0..sym_count {
let sym_bytes =
&symtab_buf[i * sh.sh_entsize as usize..(i + 1) * sh.sh_entsize as usize];
let sym = cast_sym(sym_bytes);
let str_sh = read_section(file, &elf_header, sh.sh_link);
let mut name = Vec::new();
file.seek_from_start(str_sh.sh_offset + sym.st_name)
.unwrap();
loop {
let mut byte = [0u8; 1];
file.read(&mut byte).unwrap();
if byte[0] == 0 {
break;
}
name.push(byte[0]);
}
let symbol_name = core::str::from_utf8(&name).unwrap();
if symbol_name == "CALL_ABI_TABLE" {
let table_base =
unsafe { base.add((sym.st_value as usize) - min_vaddr as usize) }
as *mut usize;
for (idx, call) in CallAbiTable::iter().enumerate() {
let ptr = match call {
CallAbiTable::PrintString => abi::print as usize,
CallAbiTable::SleepMs => abi::sleep as usize,
CallAbiTable::GetMs => abi::get_ms as usize,
CallAbiTable::LockDisplay => abi::lock_display as usize,
CallAbiTable::DrawIter => abi::draw_iter as usize,
CallAbiTable::GetKey => abi::get_key as usize,
CallAbiTable::GenRand => abi::gen_rand as usize,
CallAbiTable::ListDir => abi::list_dir as usize,
CallAbiTable::ReadFile => abi::read_file as usize,
CallAbiTable::FileLen => abi::file_len as usize,
};
unsafe {
table_base.add(idx as usize).write(ptr);
}
}
return Ok(());
}
}
}
}
Err(())
}
fn total_loadable_size(
file: &mut File,
elf_header: &Header,
ph_buf: &mut [u8],
) -> (usize, u32, u32) {
let mut min_vaddr = u32::MAX;
let mut max_vaddr = 0u32;
for i in 0..elf_header.e_phnum {
file.seek_from_start(elf_header.e_phoff + (elf_header.e_phentsize * i) as u32)
.unwrap();
file.read(ph_buf).unwrap();
let ph = cast_phdr(&ph_buf);
if ph.p_type == PT_LOAD {
if ph.p_vaddr < min_vaddr {
min_vaddr = ph.p_vaddr;
}
if ph.p_vaddr + ph.p_memsz > max_vaddr {
max_vaddr = ph.p_vaddr + ph.p_memsz;
}
}
}
let total_size = (max_vaddr - min_vaddr) as usize;
(total_size, min_vaddr, max_vaddr)
}
fn read_section(file: &mut File, elf_header: &Header, section: u32) -> SectionHeader {
let mut sh_buf = vec![0_u8; elf_header.e_shentsize as usize];
file.seek_from_start(elf_header.e_shoff + (elf_header.e_shentsize as u32 * section))
.unwrap();
file.read(&mut sh_buf).unwrap();
cast_shdr(&sh_buf)
}
fn cast_phdr(buf: &[u8]) -> ProgramHeader {
assert!(buf.len() >= core::mem::size_of::<ProgramHeader>());
unsafe { core::ptr::read(buf.as_ptr() as *const ProgramHeader) }
}
fn cast_shdr(buf: &[u8]) -> SectionHeader {
assert!(buf.len() >= core::mem::size_of::<SectionHeader>());
unsafe { core::ptr::read(buf.as_ptr() as *const SectionHeader) }
}
fn cast_sym(buf: &[u8]) -> Sym {
assert!(buf.len() >= core::mem::size_of::<Sym>());
unsafe { core::ptr::read(buf.as_ptr() as *const Sym) }
}
fn cast_rel(buf: &[u8]) -> Rel {
assert!(buf.len() >= core::mem::size_of::<Rel>());
unsafe { core::ptr::read(buf.as_ptr() as *const Rel) }
}

367
kernel/src/framebuffer.rs Normal file
View File

@@ -0,0 +1,367 @@
use crate::display::{SCREEN_HEIGHT, SCREEN_WIDTH};
use core::sync::atomic::{AtomicBool, Ordering};
use embassy_sync::lazy_lock::LazyLock;
use embedded_graphics::{
draw_target::DrawTarget,
pixelcolor::{
Rgb565,
raw::{RawData, RawU16},
},
prelude::*,
primitives::Rectangle,
};
use embedded_hal_2::digital::OutputPin;
use embedded_hal_async::{delay::DelayNs, spi::SpiDevice};
use heapless::Vec;
use st7365p_lcd::ST7365P;
pub const TILE_SIZE: usize = 16; // 16x16 tile
pub const TILE_COUNT: usize = (SCREEN_WIDTH / TILE_SIZE) * (SCREEN_HEIGHT / TILE_SIZE); // 400 tiles
// Group of tiles for batching
pub const MAX_META_TILES: usize = SCREEN_WIDTH / TILE_SIZE; // max number of meta tiles in buffer
type MetaTileVec = heapless::Vec<Rectangle, { TILE_COUNT / MAX_META_TILES }>;
const SIZE: usize = SCREEN_HEIGHT * SCREEN_WIDTH;
static mut BUFFER: [u16; SIZE] = [0; SIZE];
static mut DIRTY_TILES: LazyLock<heapless::Vec<AtomicBool, TILE_COUNT>> = LazyLock::new(|| {
let mut tiles = Vec::new();
for _ in 0..TILE_COUNT {
tiles.push(AtomicBool::new(true)).unwrap();
}
tiles
});
#[allow(dead_code)]
pub struct AtomicFrameBuffer;
impl AtomicFrameBuffer {
pub const fn new() -> Self {
Self
}
fn mark_tiles_dirty(&mut self, rect: Rectangle) {
let tiles_x = (SCREEN_WIDTH + TILE_SIZE - 1) / TILE_SIZE;
let start_tx = (rect.top_left.x as usize) / TILE_SIZE;
let end_tx = ((rect.top_left.x + rect.size.width as i32 - 1) as usize) / TILE_SIZE;
let start_ty = (rect.top_left.y as usize) / TILE_SIZE;
let end_ty = ((rect.top_left.y + rect.size.height as i32 - 1) as usize) / TILE_SIZE;
for ty in start_ty..=end_ty {
for tx in start_tx..=end_tx {
let tile_idx = ty * tiles_x + tx;
unsafe { DIRTY_TILES.get_mut()[tile_idx].store(true, Ordering::Relaxed) };
}
}
}
fn set_pixel(&mut self, x: u16, y: u16, color: u16) -> Result<(), ()> {
unsafe { BUFFER[(y as usize * SCREEN_WIDTH) + x as usize] = color };
Ok(())
}
fn set_pixels_buffered<P: IntoIterator<Item = u16>>(
&mut self,
sx: u16,
sy: u16,
ex: u16,
ey: u16,
colors: P,
) -> Result<(), ()> {
if sx >= self.size().width as u16
|| ex >= self.size().width as u16
|| sy >= self.size().height as u16
|| ey >= self.size().height as u16
{
return Err(()); // Bounds check
}
let mut color_iter = colors.into_iter();
for y in sy..=ey {
for x in sx..=ex {
if let Some(color) = color_iter.next() {
unsafe { BUFFER[(y as usize * SCREEN_WIDTH) + x as usize] = color };
} else {
return Err(()); // Not enough data
}
}
}
// Optional: check that we consumed *exactly* the right amount
if color_iter.next().is_some() {
return Err(()); // Too much data
}
Ok(())
}
// walk the dirty tiles and mark groups of tiles(meta-tiles) for batched updates
fn find_meta_tiles(&mut self, tiles_x: usize, tiles_y: usize) -> MetaTileVec {
let mut meta_tiles: MetaTileVec = heapless::Vec::new();
for ty in 0..tiles_y {
let mut tx = 0;
while tx < tiles_x {
let idx = ty * tiles_x + tx;
if !unsafe { DIRTY_TILES.get()[idx].load(Ordering::Acquire) } {
tx += 1;
continue;
}
// Start meta-tile at this tile
let mut width_tiles = 1;
let height_tiles = 1;
// Grow horizontally, but keep under MAX_TILES_PER_METATILE
while tx + width_tiles < tiles_x
&& unsafe {
DIRTY_TILES.get()[ty * tiles_x + tx + width_tiles].load(Ordering::Relaxed)
}
&& (width_tiles + height_tiles) <= MAX_META_TILES
{
width_tiles += 1;
}
// TODO: for simplicity, skipped vertical growth
for x_off in 0..width_tiles {
unsafe {
DIRTY_TILES.get()[ty * tiles_x + tx + x_off]
.store(false, Ordering::Release);
};
}
// new meta-tile pos
let rect = Rectangle::new(
Point::new((tx * TILE_SIZE) as i32, (ty * TILE_SIZE) as i32),
Size::new(
(width_tiles * TILE_SIZE) as u32,
(height_tiles * TILE_SIZE) as u32,
),
);
if meta_tiles.push(rect).is_err() {
return meta_tiles;
};
tx += width_tiles;
}
}
meta_tiles
}
/// Sends the entire framebuffer to the display
pub async fn draw<SPI, DC, RST, DELAY: DelayNs>(
&mut self,
display: &mut ST7365P<SPI, DC, RST, DELAY>,
) -> Result<(), ()>
where
SPI: SpiDevice,
DC: OutputPin,
RST: OutputPin,
{
display
.set_pixels_buffered(
0,
0,
self.size().width as u16 - 1,
self.size().height as u16 - 1,
unsafe { &BUFFER },
)
.await?;
unsafe {
for tile in DIRTY_TILES.get_mut().iter() {
tile.store(false, Ordering::Release);
}
};
Ok(())
}
/// Sends only dirty tiles (16x16px) in batches to the display
pub async fn partial_draw_batched<SPI, DC, RST, DELAY>(
&mut self,
display: &mut ST7365P<SPI, DC, RST, DELAY>,
) -> Result<(), ()>
where
SPI: SpiDevice,
DC: OutputPin,
RST: OutputPin,
DELAY: DelayNs,
{
if unsafe { DIRTY_TILES.get().iter().any(|p| p.load(Ordering::Acquire)) } {
let tiles_x = (SCREEN_WIDTH + TILE_SIZE - 1) / TILE_SIZE;
let tiles_y = (SCREEN_HEIGHT + TILE_SIZE - 1) / TILE_SIZE;
let meta_tiles = self.find_meta_tiles(tiles_x, tiles_y);
// buffer for copying meta tiles before sending to display
let mut pixel_buffer: heapless::Vec<u16, { MAX_META_TILES * TILE_SIZE * TILE_SIZE }> =
Vec::new();
for rect in meta_tiles {
let rect_width = rect.size.width as usize;
let rect_height = rect.size.height as usize;
let rect_x = rect.top_left.x as usize;
let rect_y = rect.top_left.y as usize;
pixel_buffer.clear();
for row in 0..rect_height {
let y = rect_y + row;
let start = y * SCREEN_WIDTH + rect_x;
let end = start + rect_width;
// Safe: we guarantee buffer will not exceed MAX_META_TILE_PIXELS
pixel_buffer
.extend_from_slice(unsafe { &BUFFER[start..end] })
.unwrap();
}
display
.set_pixels_buffered(
rect_x as u16,
rect_y as u16,
(rect_x + rect_width - 1) as u16,
(rect_y + rect_height - 1) as u16,
&pixel_buffer,
)
.await?;
// walk the meta-tile and set as clean
let start_tx = rect_x / TILE_SIZE;
let start_ty = rect_y / TILE_SIZE;
let end_tx = (rect_x + rect_width - 1) / TILE_SIZE;
let end_ty = (rect_y + rect_height - 1) / TILE_SIZE;
for ty in start_ty..=end_ty {
for tx in start_tx..=end_tx {
let tile_idx = ty * tiles_x + tx;
unsafe { DIRTY_TILES.get_mut()[tile_idx].store(false, Ordering::Release) };
}
}
}
}
Ok(())
}
}
impl DrawTarget for AtomicFrameBuffer {
type Error = ();
type Color = Rgb565;
fn draw_iter<I>(&mut self, pixels: I) -> Result<(), Self::Error>
where
I: IntoIterator<Item = Pixel<Self::Color>>,
{
let mut dirty_rect: Option<Rectangle> = None;
for Pixel(coord, color) in pixels {
if coord.x >= 0 && coord.y >= 0 {
let x = coord.x as i32;
let y = coord.y as i32;
if (x as usize) < SCREEN_WIDTH && (y as usize) < SCREEN_HEIGHT {
unsafe {
BUFFER[(y as usize) * SCREEN_WIDTH + (x as usize)] =
RawU16::from(color).into_inner()
};
if let Some(ref mut rect) = dirty_rect {
rect.top_left.x = rect.top_left.x.min(x);
rect.top_left.y = rect.top_left.y.min(y);
let max_x = (rect.top_left.x + rect.size.width as i32 - 1).max(x);
let max_y = (rect.top_left.y + rect.size.height as i32 - 1).max(y);
rect.size.width = (max_x - rect.top_left.x + 1) as u32;
rect.size.height = (max_y - rect.top_left.y + 1) as u32;
} else {
dirty_rect = Some(Rectangle::new(Point::new(x, y), Size::new(1, 1)));
}
}
}
}
if let Some(rect) = dirty_rect {
self.mark_tiles_dirty(rect);
}
Ok(())
}
fn fill_contiguous<I>(&mut self, area: &Rectangle, colors: I) -> Result<(), Self::Error>
where
I: IntoIterator<Item = Self::Color>,
{
let drawable_area = area.intersection(&Rectangle::new(Point::zero(), self.size()));
if drawable_area.size != Size::zero() {
// We assume that `colors` iterator is in row-major order for the original `area`
// So we must skip rows/pixels that are clipped
let area_width = area.size.width;
let area_height = area.size.height;
let mut colors = colors.into_iter();
for y in 0..area_height {
for x in 0..area_width {
let p = area.top_left + Point::new(x as i32, y as i32);
if drawable_area.contains(p) {
if let Some(color) = colors.next() {
self.set_pixel(
p.x as u16,
p.y as u16,
RawU16::from(color).into_inner(),
)?;
} else {
break;
}
} else {
// Still need to consume the color even if not used!
let _ = colors.next();
}
}
}
self.mark_tiles_dirty(*area);
}
Ok(())
}
fn fill_solid(&mut self, area: &Rectangle, color: Self::Color) -> Result<(), Self::Error> {
self.fill_contiguous(
area,
core::iter::repeat(color).take((self.size().width * self.size().height) as usize),
)
}
fn clear(&mut self, color: Self::Color) -> Result<(), Self::Error> {
self.set_pixels_buffered(
0,
0,
self.size().width as u16 - 1,
self.size().height as u16 - 1,
core::iter::repeat(RawU16::from(color).into_inner())
.take((self.size().width * self.size().height) as usize),
)?;
for tile in unsafe { DIRTY_TILES.get_mut() }.iter() {
tile.store(true, Ordering::Release);
}
Ok(())
}
}
impl OriginDimensions for AtomicFrameBuffer {
fn size(&self) -> Size {
Size::new(SCREEN_WIDTH as u32, SCREEN_HEIGHT as u32)
}
}

133
kernel/src/heap.rs Normal file
View File

@@ -0,0 +1,133 @@
// This whole file was taken from
// <https://github.com/wezterm/picocalc-wezterm/blob/8dcf8aae0598afdeaf0ed2ba50c39dea6e30c011/src/heap.rs>
//
use core::alloc::{GlobalAlloc, Layout};
use core::mem::MaybeUninit;
use core::sync::atomic::{AtomicUsize, Ordering};
use embedded_alloc::LlffHeap as Heap;
#[global_allocator]
pub static HEAP: DualHeap = DualHeap::empty();
const HEAP_SIZE: usize = 64 * 1024;
static mut HEAP_MEM: [MaybeUninit<u8>; HEAP_SIZE] = [MaybeUninit::uninit(); HEAP_SIZE];
struct Region {
start: AtomicUsize,
size: AtomicUsize,
}
impl Region {
const fn default() -> Self {
Self {
start: AtomicUsize::new(0),
size: AtomicUsize::new(0),
}
}
fn contains(&self, address: usize) -> bool {
let start = self.start.load(Ordering::Relaxed);
let end = self.start.load(Ordering::Relaxed);
(start..start + end).contains(&address)
}
fn new(start: usize, size: usize) -> Self {
Self {
start: AtomicUsize::new(start),
size: AtomicUsize::new(size),
}
}
}
/// This is an allocator that combines two regions of memory.
/// The intent is to use some of the directly connected RAM
/// for this, and if we find some XIP capable PSRAM, add that
/// as a secondary region.
/// Allocation from the primary region is always preferred,
/// as it is expected to be a bit faster than PSRAM.
/// FIXME: PSRAM-allocated memory isn't compatible with
/// CAS atomics, so we might need a bit of a think about this!
pub struct DualHeap {
primary: Heap,
primary_region: Region,
secondary: Heap,
}
impl DualHeap {
pub const fn empty() -> Self {
Self {
primary: Heap::empty(),
primary_region: Region::default(),
secondary: Heap::empty(),
}
}
unsafe fn add_primary(&self, region: Region) {
let start = region.start.load(Ordering::SeqCst);
let size = region.size.load(Ordering::SeqCst);
unsafe {
self.primary.init(start, size);
}
self.primary_region.start.store(start, Ordering::SeqCst);
self.primary_region.size.store(size, Ordering::SeqCst);
}
unsafe fn add_secondary(&self, region: Region) {
let start = region.start.load(Ordering::SeqCst);
let size = region.size.load(Ordering::SeqCst);
unsafe {
self.secondary.init(start, size);
}
}
pub fn used(&self) -> usize {
self.primary.used() + self.secondary.used()
}
pub fn free(&self) -> usize {
self.primary.free() + self.secondary.free()
}
}
unsafe impl GlobalAlloc for DualHeap {
unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
unsafe {
let ptr = self.primary.alloc(layout);
if !ptr.is_null() {
return ptr;
}
// start using secondary area when primary heap is full
self.secondary.alloc(layout)
}
}
unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) {
unsafe {
let ptr_usize = ptr as usize;
if self.primary_region.contains(ptr_usize) {
self.primary.dealloc(ptr, layout);
} else {
self.secondary.dealloc(ptr, layout);
}
}
}
}
pub fn init_heap() {
let primary_start = &raw mut HEAP_MEM as usize;
unsafe { HEAP.add_primary(Region::new(primary_start, HEAP_SIZE)) }
}
pub fn init_qmi_psram_heap(size: u32) {
unsafe { HEAP.add_secondary(Region::new(0x11000000, size as usize)) }
}
pub async fn free_command(_args: &[&str]) {
let ram_used = HEAP.primary.used();
let ram_free = HEAP.primary.free();
let ram_total = ram_used + ram_free;
let qmi_used = HEAP.secondary.used();
let qmi_free = HEAP.secondary.free();
let qmi_total = qmi_used + qmi_free;
}

280
kernel/src/main.rs Normal file
View File

@@ -0,0 +1,280 @@
#![feature(impl_trait_in_assoc_type)]
#![feature(str_from_raw_parts)]
#![cfg_attr(not(test), no_std)]
#![cfg_attr(not(test), no_main)]
#![allow(static_mut_refs)]
extern crate alloc;
mod abi;
mod display;
mod elf;
mod framebuffer;
mod peripherals;
mod scsi;
mod storage;
mod ui;
mod usb;
mod utils;
use crate::{
abi::{KEY_CACHE, MS_SINCE_LAUNCH},
display::{FRAMEBUFFER, display_handler, init_display},
peripherals::{
conf_peripherals,
keyboard::{KeyState, read_keyboard_fifo},
},
scsi::MSC_SHUTDOWN,
storage::{SDCARD, SdCard},
ui::{SELECTIONS, clear_selection, ui_handler},
};
use abi_sys::EntryFn;
use bumpalo::Bump;
use embedded_graphics::{
pixelcolor::Rgb565,
prelude::{DrawTarget, RgbColor},
};
use {defmt_rtt as _, panic_probe as _};
use core::sync::atomic::{AtomicBool, Ordering};
use defmt::unwrap;
use embassy_executor::{Executor, Spawner};
use embassy_futures::{join::join, select::select};
use embassy_rp::{
Peri,
gpio::{Input, Level, Output, Pull},
i2c::{self, I2c},
multicore::{Stack, spawn_core1},
peripherals::{
DMA_CH0, DMA_CH1, I2C1, PIN_6, PIN_7, PIN_10, PIN_11, PIN_12, PIN_13, PIN_14, PIN_15,
PIN_16, PIN_17, PIN_18, PIN_19, PIN_22, SPI0, SPI1, USB,
},
spi::{self, Spi},
usb as embassy_rp_usb,
};
use embassy_sync::{
blocking_mutex::raw::CriticalSectionRawMutex, channel::Channel, signal::Signal,
};
use embassy_time::{Delay, Instant, Timer};
use embedded_hal_bus::spi::ExclusiveDevice;
use embedded_sdmmc::SdCard as SdmmcSdCard;
use static_cell::StaticCell;
use talc::*;
embassy_rp::bind_interrupts!(struct Irqs {
I2C1_IRQ => i2c::InterruptHandler<I2C1>;
USBCTRL_IRQ => embassy_rp_usb::InterruptHandler<USB>;
});
static mut CORE1_STACK: Stack<16384> = Stack::new();
static EXECUTOR0: StaticCell<Executor> = StaticCell::new();
static EXECUTOR1: StaticCell<Executor> = StaticCell::new();
static mut ARENA: [u8; 200 * 1024] = [0; 200 * 1024];
#[global_allocator]
static ALLOCATOR: Talck<spin::Mutex<()>, ClaimOnOom> =
Talc::new(unsafe { ClaimOnOom::new(Span::from_array(core::ptr::addr_of!(ARENA).cast_mut())) })
.lock();
static ENABLE_UI: AtomicBool = AtomicBool::new(true);
static UI_CHANGE: Signal<CriticalSectionRawMutex, ()> = Signal::new();
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
let p = embassy_rp::init(Default::default());
spawn_core1(
p.CORE1,
unsafe { &mut *core::ptr::addr_of_mut!(CORE1_STACK) },
move || {
let executor1 = EXECUTOR1.init(Executor::new());
executor1.run(|spawner| unwrap!(spawner.spawn(userland_task())));
},
);
let display = Display {
spi: p.SPI1,
clk: p.PIN_10,
mosi: p.PIN_11,
miso: p.PIN_12,
dma1: p.DMA_CH0,
dma2: p.DMA_CH1,
cs: p.PIN_13,
data: p.PIN_14,
reset: p.PIN_15,
};
let sd = Sd {
spi: p.SPI0,
clk: p.PIN_18,
mosi: p.PIN_19,
miso: p.PIN_16,
cs: p.PIN_17,
det: p.PIN_22,
};
let mcu = Mcu {
i2c: p.I2C1,
clk: p.PIN_7,
data: p.PIN_6,
};
let executor0 = EXECUTOR0.init(Executor::new());
executor0.run(|spawner| unwrap!(spawner.spawn(kernel_task(spawner, display, sd, mcu, p.USB))));
}
// One-slot channel to pass EntryFn from core1
static BINARY_CH: Channel<CriticalSectionRawMutex, (EntryFn, Bump), 1> = Channel::new();
// runs dynamically loaded elf files
#[embassy_executor::task]
async fn userland_task() {
let recv = BINARY_CH.receiver();
loop {
let (entry, _bump) = recv.receive().await;
// disable kernel ui
{
ENABLE_UI.store(false, Ordering::Release);
UI_CHANGE.signal(());
clear_selection().await;
MSC_SHUTDOWN.signal(());
}
unsafe { MS_SINCE_LAUNCH = Some(Instant::now()) };
defmt::info!("Executing Binary");
entry();
// enable kernel ui
{
ENABLE_UI.store(true, Ordering::Release);
UI_CHANGE.signal(());
unsafe { FRAMEBUFFER.clear(Rgb565::BLACK).unwrap() };
let mut selections = SELECTIONS.lock().await;
selections.set_changed(true);
}
}
}
struct Display {
spi: Peri<'static, SPI1>,
clk: Peri<'static, PIN_10>,
mosi: Peri<'static, PIN_11>,
miso: Peri<'static, PIN_12>,
dma1: Peri<'static, DMA_CH0>,
dma2: Peri<'static, DMA_CH1>,
cs: Peri<'static, PIN_13>,
data: Peri<'static, PIN_14>,
reset: Peri<'static, PIN_15>,
}
struct Sd {
spi: Peri<'static, SPI0>,
clk: Peri<'static, PIN_18>,
mosi: Peri<'static, PIN_19>,
miso: Peri<'static, PIN_16>,
cs: Peri<'static, PIN_17>,
det: Peri<'static, PIN_22>,
}
struct Mcu {
i2c: Peri<'static, I2C1>,
clk: Peri<'static, PIN_7>,
data: Peri<'static, PIN_6>,
}
async fn setup_mcu(mcu: Mcu) {
// MCU i2c bus for peripherals( keyboard)
let mut config = i2c::Config::default();
config.frequency = 400_000;
let i2c1 = I2c::new_async(mcu.i2c, mcu.clk, mcu.data, Irqs, config);
conf_peripherals(i2c1).await;
}
async fn setup_display(display: Display, spawner: Spawner) {
let mut config = spi::Config::default();
config.frequency = 16_000_000;
let spi = Spi::new(
display.spi,
display.clk,
display.mosi,
display.miso,
display.dma1,
display.dma2,
config,
);
let display = init_display(spi, display.cs, display.data, display.reset).await;
spawner.spawn(display_handler(display)).unwrap();
}
async fn setup_sd(sd: Sd) {
let mut config = spi::Config::default();
config.frequency = 400_000;
let spi = Spi::new_blocking(sd.spi, sd.clk, sd.mosi, sd.miso, config.clone());
let cs = Output::new(sd.cs, Level::High);
let det = Input::new(sd.det, Pull::None);
let device = ExclusiveDevice::new(spi, cs, Delay).unwrap();
let sdcard = SdmmcSdCard::new(device, Delay);
config.frequency = 32_000_000;
sdcard.spi(|dev| dev.bus_mut().set_config(&config));
SDCARD.get().lock().await.replace(SdCard::new(sdcard, det));
}
#[embassy_executor::task]
async fn kernel_task(
spawner: Spawner,
display: Display,
sd: Sd,
mcu: Mcu,
usb: Peri<'static, USB>,
) {
setup_mcu(mcu).await;
Timer::after_millis(250).await;
setup_display(display, spawner).await;
setup_sd(sd).await;
let _usb = embassy_rp_usb::Driver::new(usb, Irqs);
// spawner.spawn(usb_handler(usb)).unwrap();
loop {
let ui_enabled = ENABLE_UI.load(Ordering::Relaxed);
if ui_enabled {
select(join(ui_handler(), prog_search_handler()), UI_CHANGE.wait()).await;
} else {
select(key_handler(), UI_CHANGE.wait()).await;
}
}
}
async fn prog_search_handler() {
loop {
{
let mut guard = SDCARD.get().lock().await;
let sd = guard.as_mut().unwrap();
let files = sd.list_files_by_extension(".bin").unwrap();
let mut select = SELECTIONS.lock().await;
if *select.selections() != files {
select.update_selections(files);
select.reset();
}
}
Timer::after_secs(5).await;
}
}
async fn key_handler() {
loop {
if let Some(event) = read_keyboard_fifo().await {
if let KeyState::Pressed = event.state {
unsafe {
let _ = KEY_CACHE.enqueue(event);
}
}
}
Timer::after_millis(50).await;
}
}

View File

@@ -0,0 +1,59 @@
use crate::peripherals::PERIPHERAL_BUS;
pub use abi_sys::keyboard::{KeyCode, KeyEvent, KeyState, Modifiers};
const REG_ID_KEY: u8 = 0x04;
const REG_ID_FIF: u8 = 0x09;
const KEY_CAPSLOCK: u8 = 1 << 5;
const KEY_NUMLOCK: u8 = 1 << 6;
const KEY_COUNT_MASK: u8 = 0x1F; // 0x1F == 31
pub async fn read_keyboard_fifo() -> Option<KeyEvent> {
let mut i2c = PERIPHERAL_BUS.get().lock().await;
let i2c = i2c.as_mut().unwrap();
let mut key_status = [0_u8; 1];
if i2c
.write_read_async(super::MCU_ADDR, [REG_ID_KEY], &mut key_status)
.await
.is_ok()
{
let _caps = key_status[0] & KEY_CAPSLOCK == KEY_CAPSLOCK;
let _num = key_status[0] & KEY_NUMLOCK == KEY_NUMLOCK;
let fifo_count = key_status[0] & KEY_COUNT_MASK;
if fifo_count >= 1 {
let mut event = [0_u8; 2];
if i2c
.write_read_async(super::MCU_ADDR, [REG_ID_FIF], &mut event)
.await
.is_ok()
{
return Some(KeyEvent {
state: KeyState::from(event[0]),
key: KeyCode::from(event[1]),
mods: Modifiers::NONE,
});
}
}
}
None
}
const REG_ID_DEB: u8 = 0x06;
const REG_ID_FRQ: u8 = 0x07;
pub async fn configure_keyboard(debounce: u8, poll_freq: u8) {
let mut i2c = PERIPHERAL_BUS.get().lock().await;
let i2c = i2c.as_mut().unwrap();
let _ = i2c
.write_read_async(super::MCU_ADDR, [REG_ID_DEB], &mut [debounce])
.await;
let _ = i2c
.write_read_async(super::MCU_ADDR, [REG_ID_FRQ], &mut [poll_freq])
.await;
}

View File

@@ -0,0 +1,100 @@
//! handles all the peripherals exposed by mcu through i2c (keyboard & battery registers)
//!
use embassy_rp::{
i2c::{Async, I2c},
peripherals::I2C1,
};
use embassy_sync::{
blocking_mutex::raw::CriticalSectionRawMutex, lazy_lock::LazyLock, mutex::Mutex,
};
use embassy_time::Timer;
pub mod keyboard;
use crate::peripherals::keyboard::{configure_keyboard, read_keyboard_fifo};
const MCU_ADDR: u8 = 0x1F;
type I2CBUS = I2c<'static, I2C1, Async>;
pub static PERIPHERAL_BUS: LazyLock<Mutex<CriticalSectionRawMutex, Option<I2CBUS>>> =
LazyLock::new(|| Mutex::new(None));
const REG_ID_VER: u8 = 0x01;
const REG_ID_RST: u8 = 0x08;
const REG_ID_INT: u8 = 0x03;
pub async fn conf_peripherals(i2c: I2CBUS) {
Timer::after(embassy_time::Duration::from_millis(100)).await;
PERIPHERAL_BUS.get().lock().await.replace(i2c);
configure_keyboard(200, 100).await;
// empty keys
while read_keyboard_fifo().await.is_some() {}
// set_lcd_backlight(255).await;
set_key_backlight(0).await;
}
/// return major & minor mcu version
async fn get_version() -> (u8, u8) {
let mut i2c = PERIPHERAL_BUS.get().lock().await;
let i2c = i2c.as_mut().unwrap();
let mut ver = [0_u8; 1];
let _ = i2c.write_read_async(MCU_ADDR, [REG_ID_VER], &mut ver).await;
(ver[0] >> 4, ver[0] & 0x0F)
}
const REG_ID_BKL: u8 = 0x05;
pub async fn set_lcd_backlight(brightness: u8) {
let mut i2c = PERIPHERAL_BUS.get().lock().await;
let i2c = i2c.as_mut().unwrap();
let _ = i2c
.write_read_async(MCU_ADDR, [REG_ID_BKL], &mut [brightness])
.await;
}
pub async fn get_lcd_backlight() -> u8 {
let mut i2c = PERIPHERAL_BUS.get().lock().await;
let i2c = i2c.as_mut().unwrap();
let mut buf = [0_u8; 2];
let _ = i2c.write_read_async(MCU_ADDR, [REG_ID_BKL], &mut buf).await;
buf[1]
}
const REG_ID_BK2: u8 = 0x0A;
pub async fn set_key_backlight(brightness: u8) {
let mut i2c = PERIPHERAL_BUS.get().lock().await;
let i2c = i2c.as_mut().unwrap();
let _ = i2c
.write_read_async(MCU_ADDR, [REG_ID_BK2], &mut [brightness])
.await;
}
pub async fn get_key_backlight() -> u8 {
let mut i2c = PERIPHERAL_BUS.get().lock().await;
let i2c = i2c.as_mut().unwrap();
let mut buf = [0_u8; 2];
let _ = i2c.write_read_async(MCU_ADDR, [REG_ID_BK2], &mut buf).await;
buf[1]
}
const REG_ID_BAT: u8 = 0x0b;
pub async fn get_battery() -> u8 {
let mut i2c = PERIPHERAL_BUS.get().lock().await;
let i2c = i2c.as_mut().unwrap();
let mut buf = [0_u8; 2];
let _ = i2c.write_read_async(MCU_ADDR, [REG_ID_BAT], &mut buf).await;
buf[1]
}

615
kernel/src/psram.rs Normal file
View File

@@ -0,0 +1,615 @@
// This whole file was taken from
// <https://github.com/wezterm/picocalc-wezterm/blob/8dcf8aae0598afdeaf0ed2ba50c39dea6e30c011/src/psram.rs>
//
use crate::Irqs;
use embassy_futures::yield_now;
use embassy_rp::PeripheralRef;
use embassy_rp::clocks::clk_peri_freq;
use embassy_rp::gpio::Drive;
use embassy_rp::peripherals::{DMA_CH1, DMA_CH2, PIN_2, PIN_3, PIN_20, PIN_21, PIO1};
use embassy_rp::pio::program::pio_asm;
use embassy_rp::pio::{Config, Direction, Pio, ShiftDirection};
use embassy_time::{Duration, Instant, Timer};
use fixed::FixedU32;
use fixed::types::extra::U8;
// The physical connections in the picocalc schematic are:
// LABEL PICO ESP-PSRAM64H
// RAM_CS - PIN_20 CE (pulled up to 3v3 via 10kOhm)
// RAM_SCK - PIN_21 SCLK
// RAM_TX - PIN_2 SI/SIO0
// RAM_RX - PIN_3 SO/SIO1
// RAM_IO2 - PIN_4 SIO2 (QPI Mode)
// RAM_IO3 - PIN_5 SIO3 (QPI Mode)
#[allow(unused)]
const PSRAM_CMD_QUAD_END: u8 = 0xf5;
#[allow(unused)]
const PSRAM_CMD_QUAD_ENABLE: u8 = 0x35;
#[allow(unused)]
const PSRAM_CMD_READ_ID: u8 = 0x9F;
const PSRAM_CMD_RSTEN: u8 = 0x66;
const PSRAM_CMD_RST: u8 = 0x99;
const PSRAM_CMD_WRITE: u8 = 0x02;
const PSRAM_CMD_FAST_READ: u8 = 0x0B;
#[allow(unused)]
const PSRAM_CMD_QUAD_READ: u8 = 0xEB;
#[allow(unused)]
const PSRAM_CMD_QUAD_WRITE: u8 = 0x38;
#[allow(unused)]
const PSRAM_CMD_NOOP: u8 = 0xFF;
#[allow(unused)]
const PSRAM_KNOWN_GOOD_DIE_PASS: u8 = 0x5d;
pub struct PsRam {
sm: embassy_rp::pio::StateMachine<'static, PIO1, 0>,
tx_ch: PeripheralRef<'static, DMA_CH1>,
rx_ch: PeripheralRef<'static, DMA_CH2>,
pub size: u32,
}
impl PsRam {
pub async fn send_command(&mut self, cmd: &[u8], out: &mut [u8]) {
if out.is_empty() {
self.sm
.tx()
.dma_push(self.tx_ch.reborrow(), cmd, false)
.await;
} else {
let (rx, tx) = self.sm.rx_tx();
tx.dma_push(self.tx_ch.reborrow(), cmd, false).await;
rx.dma_pull(self.rx_ch.reborrow(), out, false).await;
}
}
pub async fn write(&mut self, mut addr: u32, mut data: &[u8]) {
// I haven't seen this work reliably over 24 bytes
const MAX_CHUNK: usize = 24;
while data.len() > 0 {
let to_write = data.len().min(MAX_CHUNK);
//defmt::info!("writing {to_write} @ {addr}");
#[rustfmt::skip]
let mut to_send = [
32 + (to_write as u8 * 8), // write address + data
0, // read 0 bits
PSRAM_CMD_WRITE,
((addr >> 16) & 0xff) as u8,
((addr >> 8) & 0xff) as u8,
(addr & 0xff) as u8,
// This sequence must be MAX_CHUNK in length
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
];
for (src, dst) in data.iter().zip(to_send.iter_mut().skip(6)) {
*dst = *src;
}
self.send_command(&to_send[0..6 + to_write], &mut []).await;
addr += to_write as u32;
data = &data[to_write..];
}
}
pub async fn read_id(&mut self) -> [u8; 3] {
let mut id = [0u8; 3];
#[rustfmt::skip]
self.send_command(
&[
32, // write 32 bits
3 * 8, // read 8 bytes = 64 bits
PSRAM_CMD_READ_ID,
// don't care: 24-bit "address"
0, 0, 0,
],
&mut id,
)
.await;
id
}
pub async fn read(&mut self, mut addr: u32, mut out: &mut [u8]) {
// Cannot get reliable reads above 4 bytes at a time.
// out[4] will always have a bit error
const MAX_CHUNK: usize = 4;
while out.len() > 0 {
let to_read = out.len().min(MAX_CHUNK);
//defmt::info!("reading {to_read} @ {addr}");
self.send_command(
&[
40, // write 40 bits
to_read as u8 * 8, // read n bytes
PSRAM_CMD_FAST_READ,
((addr >> 16) & 0xff) as u8,
((addr >> 8) & 0xff) as u8,
(addr & 0xff) as u8,
0, // 8 cycle delay by sending 8 bits of don't care data
],
&mut out[0..to_read],
)
.await;
addr += to_read as u32;
out = &mut out[to_read..];
}
}
#[allow(unused)]
pub async fn write8(&mut self, addr: u32, data: u8) {
//defmt::info!("write8 addr {addr} <- {data:x}");
self.send_command(
&[
40, // write 40 bits
0, // read 0 bits
PSRAM_CMD_WRITE,
((addr >> 16) & 0xff) as u8,
((addr >> 8) & 0xff) as u8,
(addr & 0xff) as u8,
data,
],
&mut [],
)
.await;
}
#[allow(unused)]
pub async fn read8(&mut self, addr: u32) -> u8 {
let mut buf = [0u8];
self.send_command(
&[
40, // write 40 bits
8, // read 8 bits
PSRAM_CMD_FAST_READ,
((addr >> 16) & 0xff) as u8,
((addr >> 8) & 0xff) as u8,
(addr & 0xff) as u8,
0, // 8 cycle delay
],
&mut buf,
)
.await;
buf[0]
}
}
pub async fn init_psram(
pio_1: PIO1,
sclk: PIN_21,
mosi: PIN_2,
miso: PIN_3,
cs: PIN_20,
dma_ch1: DMA_CH1,
dma_ch2: DMA_CH2,
) -> PsRam {
let mut pio = Pio::new(pio_1, Irqs);
let clock_hz = FixedU32::from_num(embassy_rp::clocks::clk_sys_freq());
let max_psram_freq: FixedU32<U8> = FixedU32::from_num(100_000_000);
let divider = if clock_hz <= max_psram_freq {
FixedU32::from_num(1)
} else {
clock_hz / max_psram_freq
};
let effective_clock = clock_hz / divider;
use embassy_rp::clocks::*;
defmt::info!(
"pll_sys_freq={} rosc_freq={} xosc_freq={}",
pll_sys_freq(),
rosc_freq(),
xosc_freq()
);
// This pio program was taken from
// <https://github.com/polpo/rp2040-psram/blob/7786c93ec8d02dbb4f94a2e99645b25fb4abc2db/psram_spi.pio>
// which is Copyright © 2023 Ian Scott, reproduced here under the MIT license
let p = pio_asm!(
r#"
.side_set 2 ; sideset bit 1 is SCK, bit 0 is CS
begin:
out x, 8 side 0b01 ; x = number of bits to output. CS deasserted
out y, 8 side 0b01 ; y = number of bits to input
jmp x--, writeloop side 0b01 ; Pre-decement x by 1 so loop has correct number of iterations
writeloop:
out pins, 1 side 0b00 ; Write value on pin, lower clock. CS asserted
jmp x--, writeloop side 0b10 ; Raise clock: this is when PSRAM reads the value. Loop if we have more to write
jmp !y, done side 0b00 ; If this is a write-only operation, jump back to beginning
nop side 0b10 ; Fudge factor of extra clock cycle; the PSRAM needs 1 extra for output to start appearing
jmp readloop_mid side 0b00 ; Jump to middle of readloop to decrement y and get right clock phase
readloop:
in pins, 1 side 0b00 ; Read value on pin, lower clock. Datasheet says to read on falling edge > 83MHz
readloop_mid:
jmp y--, readloop side 0b10 ; Raise clock. Loop if we have more to read
done:
nop side 0b11 ; CS deasserted
"#
);
let prog = pio.common.load_program(&p.program);
let mut cfg = Config::default();
let mut cs = pio.common.make_pio_pin(cs);
let mut sclk = pio.common.make_pio_pin(sclk);
let mut mosi = pio.common.make_pio_pin(mosi);
let mut miso = pio.common.make_pio_pin(miso);
cs.set_drive_strength(Drive::_4mA);
sclk.set_drive_strength(Drive::_4mA);
mosi.set_drive_strength(Drive::_4mA);
miso.set_drive_strength(Drive::_4mA);
cfg.use_program(&prog, &[&cs, &sclk]);
cfg.set_out_pins(&[&mosi]);
cfg.set_in_pins(&[&miso]);
cfg.shift_out.direction = ShiftDirection::Left;
cfg.shift_out.auto_fill = true;
cfg.shift_out.threshold = 8;
cfg.shift_in = cfg.shift_out;
cfg.clock_divider = divider;
let mut sm = pio.sm0;
sm.set_pin_dirs(Direction::Out, &[&cs, &sclk]);
sm.set_pin_dirs(Direction::Out, &[&mosi]);
sm.set_pin_dirs(Direction::In, &[&miso]);
miso.set_input_sync_bypass(true);
sm.set_config(&cfg);
sm.set_enable(true);
let dma_ch1 = PeripheralRef::new(dma_ch1);
let dma_ch2 = PeripheralRef::new(dma_ch2);
let mut psram = PsRam {
sm,
tx_ch: dma_ch1,
rx_ch: dma_ch2,
size: 0,
};
// Issue a reset command
psram.send_command(&[8, 0, PSRAM_CMD_RSTEN], &mut []).await;
Timer::after(Duration::from_micros(50)).await;
psram.send_command(&[8, 0, PSRAM_CMD_RST], &mut []).await;
Timer::after(Duration::from_micros(100)).await;
defmt::info!("Verifying 1 byte write and read...");
for i in 0..10u8 {
psram.write8(i as u32, i).await;
}
for i in 0..10u32 {
let n = psram.read8(i as u32).await;
if n as u32 != i {}
}
defmt::info!("testing read again @ 0");
let mut got = [0u8; 8];
psram.read(0, &mut got).await;
const EXPECT: &[u8] = &[0, 1, 2, 3, 4, 5, 6, 7];
if got != EXPECT {}
const DEADBEEF: &[u8] = &[0xd, 0xe, 0xa, 0xd, 0xb, 0xe, 0xe, 0xf];
defmt::info!("testing write of deadbeef at 0");
psram.write(0, DEADBEEF).await;
defmt::info!("testing read of deadbeef from 0");
psram.read(0, &mut got).await;
if got != DEADBEEF {
for addr in 0..DEADBEEF.len() {
let bad = got[addr];
if bad != DEADBEEF[addr] {
let x = psram.read8(addr as u32).await;
}
}
}
const TEST_STRING: &[u8] = b"hello there, this is a test, how is it?";
psram.write(16, TEST_STRING).await;
let mut buffer = [0u8; 42];
psram.read(16, &mut buffer).await;
let got = &buffer[0..TEST_STRING.len()];
if got != TEST_STRING {}
defmt::info!("PSRAM test complete");
let id = psram.read_id().await;
// id: [d, 5d, 53, 15, 49, e3, 7c, 7b]
// id[0] -- manufacturer id
// id[1] -- "known good die" status
if id[1] == PSRAM_KNOWN_GOOD_DIE_PASS {
// See <https://github.com/espressif/esp-idf/blob/1c468f68259065ef51afd114605d9122f13d9d72/components/esp_psram/esp32/esp_psram_impl_quad.c#L67-L86>
// for information on deciding the size of ESP PSRAM chips,
// such as the one used in the picocalc
let size = match (id[2] >> 5) & 0x7 {
0 => 16,
1 => 32,
2 => 64,
_ => 0,
};
psram.size = size * 1024 * 1024 / 8;
}
psram
}
#[allow(unused)]
async fn test_psram(psram: &mut PsRam) -> bool {
const REPORT_CHUNK: u32 = 256 * 1024;
const BLOCK_SIZE: usize = 8;
let limit = psram.size; //.min(4 * 1024 * 1024);
let start = Instant::now();
fn expect(addr: u32) -> [u8; BLOCK_SIZE] {
[
!((addr >> 24 & 0xff) as u8),
!((addr >> 16 & 0xff) as u8),
!((addr >> 8 & 0xff) as u8),
!((addr & 0xff) as u8),
((addr >> 24 & 0xff) as u8),
((addr >> 16 & 0xff) as u8),
((addr >> 8 & 0xff) as u8),
((addr & 0xff) as u8),
]
}
for i in 0..limit / BLOCK_SIZE as u32 {
let addr = i * BLOCK_SIZE as u32;
let data = expect(addr);
psram.write(addr, &data).await;
if addr > 0 && addr % REPORT_CHUNK == 0 {
if start.elapsed() > Duration::from_secs(5) {}
}
// Yield so that the watchdog doesn't kick in
yield_now().await;
}
let writes_took = start.elapsed();
defmt::info!("Starting reads...");
Timer::after(Duration::from_millis(200)).await;
let start = Instant::now();
let mut bad_count = 0;
let mut data = [0u8; BLOCK_SIZE];
for i in 0..limit / BLOCK_SIZE as u32 {
let addr = i * BLOCK_SIZE as u32;
let expect = expect(addr);
psram.read(addr, &mut data).await;
if addr == 0 {
Timer::after(Duration::from_millis(200)).await;
}
if data != expect {
bad_count += 1;
if bad_count < 50 {}
}
if addr > 0 && addr % REPORT_CHUNK == 0 {
if start.elapsed() > Duration::from_secs(5) {}
}
// Yield so that the watchdog doesn't kick in
yield_now().await;
}
let reads_took = start.elapsed();
bad_count == 0
}
// The origin of the code in this file is:
// <https://github.com/Altaflux/rp2350-psram-test/blob/ae50a819fef96486f6d962a609984cde4b4dd4cc/src/psram.rs#L1>
// which is MIT/Apache-2 licensed.
#[unsafe(link_section = ".data")]
#[inline(never)]
pub fn detect_psram_qmi(qmi: &embassy_rp::pac::qmi::Qmi) -> u32 {
const GPIO_FUNC_XIP_CS1: u8 = 9;
const XIP_CS_PIN: usize = 47;
embassy_rp::pac::PADS_BANK0.gpio(XIP_CS_PIN).modify(|w| {
w.set_iso(true);
});
embassy_rp::pac::PADS_BANK0.gpio(XIP_CS_PIN).modify(|w| {
w.set_ie(true);
w.set_od(false);
});
embassy_rp::pac::IO_BANK0
.gpio(XIP_CS_PIN)
.ctrl()
.write(|w| w.set_funcsel(GPIO_FUNC_XIP_CS1));
embassy_rp::pac::PADS_BANK0.gpio(XIP_CS_PIN).modify(|w| {
w.set_iso(false);
});
critical_section::with(|_cs| {
// Try and read the PSRAM ID via direct_csr.
qmi.direct_csr().write(|w| {
w.set_clkdiv(30);
w.set_en(true);
});
// Need to poll for the cooldown on the last XIP transfer to expire
// (via direct-mode BUSY flag) before it is safe to perform the first
// direct-mode operation
while qmi.direct_csr().read().busy() {
// rp235x_hal::arch::nop();
}
// Exit out of QMI in case we've inited already
qmi.direct_csr().modify(|w| w.set_assert_cs1n(true));
// Transmit the command to exit QPI quad mode - read ID as standard SPI
// Transmit as quad.
qmi.direct_tx().write(|w| {
w.set_oe(true);
w.set_iwidth(embassy_rp::pac::qmi::vals::Iwidth::Q);
w.set_data(PSRAM_CMD_QUAD_END.into());
});
while qmi.direct_csr().read().busy() {
// rp235x_hal::arch::nop();
}
let _ = qmi.direct_rx().read();
qmi.direct_csr().modify(|w| {
w.set_assert_cs1n(false);
});
// Read the id
qmi.direct_csr().modify(|w| {
w.set_assert_cs1n(true);
});
// kgd is "known good die"
let mut kgd: u16 = 0;
let mut eid: u16 = 0;
for i in 0usize..7 {
qmi.direct_tx().write(|w| {
w.set_data(if i == 0 {
PSRAM_CMD_READ_ID.into()
} else {
PSRAM_CMD_NOOP.into()
})
});
while !qmi.direct_csr().read().txempty() {
// rp235x_hal::arch::nop();
}
while qmi.direct_csr().read().busy() {
// rp235x_hal::arch::nop();
}
let value = qmi.direct_rx().read().direct_rx();
match i {
5 => {
kgd = value;
}
6 => {
eid = value;
}
_ => {}
}
}
qmi.direct_csr().modify(|w| {
w.set_assert_cs1n(false);
w.set_en(false);
});
let mut param_size: u32 = 0;
if kgd == PSRAM_KNOWN_GOOD_DIE_PASS as u16 {
param_size = 1024 * 1024;
let size_id = eid >> 5;
if eid == 0x26 || size_id == 2 {
param_size *= 8;
} else if size_id == 0 {
param_size *= 2;
} else if size_id == 1 {
param_size *= 4;
}
}
param_size
})
}
#[unsafe(link_section = ".data")]
#[inline(never)]
pub fn init_psram_qmi(
qmi: &embassy_rp::pac::qmi::Qmi,
xip: &embassy_rp::pac::xip_ctrl::XipCtrl,
) -> u32 {
let psram_size = detect_psram_qmi(qmi);
if psram_size == 0 {
return 0;
}
// Set PSRAM timing for APS6404
//
// Using an rxdelay equal to the divisor isn't enough when running the APS6404 close to 133MHz.
// So: don't allow running at divisor 1 above 100MHz (because delay of 2 would be too late),
// and add an extra 1 to the rxdelay if the divided clock is > 100MHz (i.e. sys clock > 200MHz).
const MAX_PSRAM_FREQ: u32 = 133_000_000;
let clock_hz = clk_peri_freq();
let mut divisor: u32 = (clock_hz + MAX_PSRAM_FREQ - 1) / MAX_PSRAM_FREQ;
if divisor == 1 && clock_hz > 100_000_000 {
divisor = 2;
}
let mut rxdelay: u32 = divisor;
if clock_hz / divisor > 100_000_000 {
rxdelay += 1;
}
// - Max select must be <= 8us. The value is given in multiples of 64 system clocks.
// - Min deselect must be >= 18ns. The value is given in system clock cycles - ceil(divisor / 2).
let clock_period_fs: u64 = 1_000_000_000_000_000_u64 / u64::from(clock_hz);
let max_select: u8 = ((125 * 1_000_000) / clock_period_fs) as u8;
let min_deselect: u32 = ((18 * 1_000_000 + (clock_period_fs - 1)) / clock_period_fs
- u64::from(divisor + 1) / 2) as u32;
qmi.direct_csr().write(|w| {
w.set_clkdiv(10);
w.set_en(true);
w.set_auto_cs1n(true);
});
while qmi.direct_csr().read().busy() {
// rp235x_hal::arch::nop();
}
qmi.direct_tx().write(|w| {
w.set_nopush(true);
w.0 = 0x35;
});
while qmi.direct_csr().read().busy() {
// rp235x_hal::arch::nop();
}
qmi.mem(1).timing().write(|w| {
w.set_cooldown(1);
w.set_pagebreak(embassy_rp::pac::qmi::vals::Pagebreak::_1024);
w.set_max_select(max_select as u8);
w.set_min_deselect(min_deselect as u8);
w.set_rxdelay(rxdelay as u8);
w.set_clkdiv(divisor as u8);
});
// // Set PSRAM commands and formats
qmi.mem(1).rfmt().write(|w| {
w.set_prefix_width(embassy_rp::pac::qmi::vals::PrefixWidth::Q);
w.set_addr_width(embassy_rp::pac::qmi::vals::AddrWidth::Q);
w.set_suffix_width(embassy_rp::pac::qmi::vals::SuffixWidth::Q);
w.set_dummy_width(embassy_rp::pac::qmi::vals::DummyWidth::Q);
w.set_data_width(embassy_rp::pac::qmi::vals::DataWidth::Q);
w.set_prefix_len(embassy_rp::pac::qmi::vals::PrefixLen::_8);
w.set_dummy_len(embassy_rp::pac::qmi::vals::DummyLen::_24);
});
qmi.mem(1).rcmd().write(|w| w.0 = 0xEB);
qmi.mem(1).wfmt().write(|w| {
w.set_prefix_width(embassy_rp::pac::qmi::vals::PrefixWidth::Q);
w.set_addr_width(embassy_rp::pac::qmi::vals::AddrWidth::Q);
w.set_suffix_width(embassy_rp::pac::qmi::vals::SuffixWidth::Q);
w.set_dummy_width(embassy_rp::pac::qmi::vals::DummyWidth::Q);
w.set_data_width(embassy_rp::pac::qmi::vals::DataWidth::Q);
w.set_prefix_len(embassy_rp::pac::qmi::vals::PrefixLen::_8);
});
qmi.mem(1).wcmd().write(|w| w.0 = 0x38);
// Disable direct mode
qmi.direct_csr().write(|w| w.0 = 0);
// Enable writes to PSRAM
xip.ctrl().modify(|w| w.set_writable_m1(true));
psram_size
}

412
kernel/src/scsi/mod.rs Normal file
View File

@@ -0,0 +1,412 @@
use embassy_futures::select::select;
use embassy_sync::blocking_mutex::raw::CriticalSectionRawMutex;
use embassy_sync::lazy_lock::LazyLock;
use embassy_sync::signal::Signal;
use embassy_usb::Builder;
use embassy_usb::driver::{Driver, EndpointIn, EndpointOut};
use embedded_sdmmc::{Block, BlockIdx};
use heapless::Vec;
mod scsi_types;
use scsi_types::*;
use crate::storage::{SDCARD, SdCard};
const BULK_ENDPOINT_PACKET_SIZE: usize = 64;
pub static MSC_SHUTDOWN: Signal<CriticalSectionRawMutex, ()> = Signal::new();
// number of blocks to read from sd at once
// higher is better, but is larger. Size is BLOCKS * 512 bytes
const BLOCKS: usize = 32;
static mut BLOCK_BUF: LazyLock<[Block; BLOCKS]> =
LazyLock::new(|| core::array::from_fn(|_| Block::new()));
pub struct MassStorageClass<'d, D: Driver<'d>> {
temp_sd: Option<SdCard>, // temporary owns sdcard when scsi is running
ejected: bool,
pending_eject: bool,
bulk_out: D::EndpointOut,
bulk_in: D::EndpointIn,
}
impl<'d, 's, D: Driver<'d>> MassStorageClass<'d, D> {
pub fn new(builder: &mut Builder<'d, D>, temp_sd: Option<SdCard>) -> Self {
let mut function = builder.function(0x08, SUBCLASS_SCSI, 0x50); // Mass Storage class
let mut interface = function.interface();
let mut alt = interface.alt_setting(0x08, SUBCLASS_SCSI, 0x50, None);
let bulk_out = alt.endpoint_bulk_out(None, BULK_ENDPOINT_PACKET_SIZE as u16);
let bulk_in = alt.endpoint_bulk_in(None, BULK_ENDPOINT_PACKET_SIZE as u16);
Self {
temp_sd,
pending_eject: false,
ejected: false,
bulk_out,
bulk_in,
}
}
pub async fn poll(&mut self) {
loop {
if !self.ejected {
select(self.handle_cbw(), MSC_SHUTDOWN.wait()).await;
if MSC_SHUTDOWN.signaled() {
defmt::info!("MSC shutting down");
if self.temp_sd.is_some() {
let mut guard = SDCARD.get().lock().await;
guard.replace(self.temp_sd.take().unwrap()).unwrap();
}
self.ejected = true;
return;
}
}
}
}
async fn handle_cbw(&mut self) {
let mut cbw_buf = [0u8; 31];
if let Ok(n) = self.bulk_out.read(&mut cbw_buf).await {
if n == 31 {
if let Some(cbw) = CommandBlockWrapper::parse(&cbw_buf[..n]) {
// Take sdcard to increase speed
if self.temp_sd.is_none() {
let mut guard = SDCARD.get().lock().await;
if let Some(sd) = guard.take() {
self.temp_sd = Some(sd);
} else {
defmt::warn!("Tried to take SDCARD but it was already taken");
return;
}
}
let command = parse_cb(&cbw.CBWCB);
if self.handle_command(command).await.is_ok() {
self.send_csw_success(cbw.dCBWTag).await
} else {
self.send_csw_fail(cbw.dCBWTag).await
}
if self.pending_eject {
if let ScsiCommand::Write { lba: _, len: _ } = command {
MSC_SHUTDOWN.signal(());
}
}
}
}
}
}
async fn handle_command(&mut self, command: ScsiCommand) -> Result<(), ()> {
let mut response: Vec<u8, BULK_ENDPOINT_PACKET_SIZE> = Vec::new();
match command {
ScsiCommand::Unknown => Err(()),
ScsiCommand::Inquiry {
evpd,
page_code,
alloc_len,
} => {
if !evpd {
response.push(0x00).map_err(|_| ())?; // Direct-access block device
response.push(0x80).map_err(|_| ())?; // Removable
response.push(0x05).map_err(|_| ())?; // SPC-3 compliance
response.push(0x02).map_err(|_| ())?; // Response data format
response.push(0x00).map_err(|_| ())?; // Additional length - edited later
response.push(0x00).map_err(|_| ())?; // FLAGS
response.push(0x00).map_err(|_| ())?; // FLAGS
response.push(0).map_err(|_| ())?; // FLAGS
assert!(response.len() == 8);
let vendor = b"LEGTCMPR";
assert!(vendor.len() == 8);
response.extend_from_slice(vendor)?;
let product = b"Pico Calc Sdcard";
assert!(product.len() == 16);
response.extend_from_slice(product)?;
let version = b"1.00";
assert!(version.len() == 4);
response.extend_from_slice(version)?; // 4-byte firmware version
let addl_len = response.len() - 5;
response[4] = addl_len as u8;
assert!(response.len() == 36);
} else {
match page_code {
0x00 => {
response
.extend_from_slice(&[
0x00, // Peripheral Qualifier + Peripheral Device Type (0x00 = Direct-access block device)
0x00, // Page Code (same as requested: 0x00)
0x00, 0x03, // Page Length: 3 bytes follow
0x00, // Supported VPD Page: 0x00 (this one — the "Supported VPD Pages" page itself)
0x80, // Supported VPD Page: 0x80 (Unit Serial Number)
0x83, // Supported VPD Page: 0x83 (Device Identification)
])
.map_err(|_| ())?
}
0x80 => {
let serial = b"Pico Calc";
response.extend_from_slice(&[
0x00, // Peripheral Qualifier & Device Type
0x80, // Page Code = 0x80 (Unit Serial Number)
0x00, // Reserved
serial.len() as u8,
])?;
response.extend_from_slice(serial)?;
}
0x83 => {
let id = b"SdCard";
response.extend_from_slice(&[
0x00,
0x83, // Page code
0x00,
(4 + id.len()) as u8, // Length
0x02, // ASCII identifier
0x01, // Identifier type
0x00, // Reserved
id.len() as u8,
])?;
response.extend_from_slice(id)?;
}
_ => (),
}
};
let len = core::cmp::min(alloc_len as usize, response.len());
self.bulk_in.write(&response[..len]).await.map_err(|_| ())
}
ScsiCommand::TestUnitReady => {
if self.temp_sd.as_ref().unwrap().is_attached() {
Ok(())
} else {
Err(())
}
}
ScsiCommand::RequestSense {
desc: _,
alloc_len: _,
} => Ok(()),
ScsiCommand::ModeSense6 {
dbd: _,
page_control: _,
page_code: _,
subpage_code: _,
alloc_len,
} => {
// DBD=0, no block descriptors; total length = 4
let response = [
0x03, // Mode data length (excluding this byte): 3
0x00, // Medium type
0x00, // Device-specific parameter
0x00, // Block descriptor length = 0 (DBD = 1)
];
let len = alloc_len.min(response.len() as u8) as usize;
self.bulk_in.write(&response[..len]).await.map_err(|_| ())
}
ScsiCommand::ModeSense10 {
dbd: _,
page_control: _,
page_code: _,
subpage_code: _,
alloc_len,
} => {
let response = [
0x00, 0x06, // Mode data length = 6
0x00, // Medium type
0x00, // Device-specific parameter
0x00, 0x00, // Reserved
0x00, 0x00, // Block descriptor length = 0
];
let len = alloc_len.min(response.len() as u16) as usize;
self.bulk_in.write(&response[..len]).await.map_err(|_| ())
}
ScsiCommand::ReadCapacity10 => {
let block_size = SdCard::BLOCK_SIZE as u64;
let total_blocks = self.temp_sd.as_ref().unwrap().size() / block_size;
let last_lba = total_blocks.checked_sub(1).unwrap_or(0);
response.extend_from_slice(&(last_lba as u32).to_be_bytes())?;
response.extend_from_slice(&(block_size as u32).to_be_bytes())?;
self.bulk_in.write(&response).await.map_err(|_| ())
}
ScsiCommand::ReadCapacity16 { alloc_len } => {
let block_size = SdCard::BLOCK_SIZE as u64;
let total_blocks = self.temp_sd.as_ref().unwrap().size() / block_size;
let last_lba = total_blocks.checked_sub(1).unwrap_or(0);
response.extend_from_slice(&last_lba.to_be_bytes())?; // 8 bytes last LBA
response.extend_from_slice(&(block_size as u32).to_be_bytes())?; // 4 bytes block length
response.extend_from_slice(&[0u8; 20])?; // 20 reserved bytes zeroed
let len = alloc_len.min(response.len() as u32) as usize;
self.bulk_in.write(&response[..len]).await.map_err(|_| ())
}
ScsiCommand::Read { lba, len } => {
let sdcard = self.temp_sd.as_ref().unwrap();
let block_buf = unsafe { &mut *BLOCK_BUF.get_mut() };
let mut blocks = len;
let mut idx = lba;
while blocks > 0 {
if blocks >= block_buf.len() as u64 {
sdcard.read_blocks(block_buf, BlockIdx(idx as u32))?;
for block in &mut *block_buf {
for chunk in block.contents.chunks(BULK_ENDPOINT_PACKET_SIZE.into()) {
self.bulk_in.write(chunk).await.map_err(|_| ())?;
}
}
blocks -= block_buf.len() as u64;
idx += block_buf.len() as u64;
} else {
sdcard
.read_blocks(&mut block_buf[..blocks as usize], BlockIdx(idx as u32))?;
for block in &block_buf[..blocks as usize] {
for chunk in block.contents.chunks(BULK_ENDPOINT_PACKET_SIZE.into()) {
self.bulk_in.write(chunk).await.map_err(|_| ())?;
}
}
idx += blocks;
blocks = 0;
}
}
Ok(())
}
ScsiCommand::Write { lba, len } => {
let sdcard = self.temp_sd.as_ref().unwrap();
let block_buf = unsafe { &mut *BLOCK_BUF.get_mut() };
let mut blocks = len;
let mut idx = lba;
while blocks > 0 {
if blocks >= block_buf.len() as u64 {
for block in block_buf.as_mut() {
for chunk in block.contents.chunks_mut(BULK_ENDPOINT_PACKET_SIZE.into())
{
self.bulk_out.read(chunk).await.map_err(|_| ())?;
}
}
sdcard.read_blocks(block_buf, BlockIdx(idx as u32))?;
blocks -= block_buf.len() as u64;
idx += block_buf.len() as u64;
} else {
for block in block_buf[..blocks as usize].as_mut() {
for chunk in block.contents.chunks_mut(BULK_ENDPOINT_PACKET_SIZE.into())
{
self.bulk_out.read(chunk).await.map_err(|_| ())?;
}
}
sdcard.write_blocks(
&mut block_buf[..blocks as usize],
BlockIdx(idx as u32),
)?;
idx += blocks;
blocks = 0;
}
}
Ok(())
}
ScsiCommand::ReadFormatCapacities { alloc_len } => {
let block_size = SdCard::BLOCK_SIZE as u32;
let num_blocks = (self.temp_sd.as_ref().unwrap().size() / block_size as u64) as u32;
let mut response = [0u8; 12];
// Capacity List Length (8 bytes follows)
response[3] = 8;
// Descriptor
response[4..8].copy_from_slice(&num_blocks.to_be_bytes());
response[8] = 0x03; // formatted media
response[9..12].copy_from_slice(&block_size.to_be_bytes()[1..4]); // only 3 bytes
let response_len = alloc_len.min(response.len() as u16) as usize;
self.bulk_in
.write(&response[..response_len])
.await
.map_err(|_| ())
}
ScsiCommand::PreventAllowMediumRemoval { prevent: _prevent } => Ok(()),
ScsiCommand::StartStopUnit { start, load_eject } => {
if !start && load_eject {
self.pending_eject = true;
}
Ok(())
}
}
}
pub async fn send_csw_success(&mut self, tag: u32) {
self.send_csw(tag, 0x00, 0).await;
}
pub async fn send_csw_fail(&mut self, tag: u32) {
defmt::error!("Command Failed: {}", tag);
self.send_csw(tag, 0x01, 0).await; // 0x01 = Command Failed
}
pub async fn send_csw(&mut self, tag: u32, status: u8, residue: u32) {
let mut csw = [0u8; 13];
csw[0..4].copy_from_slice(&0x53425355u32.to_le_bytes()); // Signature "USBS"
csw[4..8].copy_from_slice(&tag.to_le_bytes());
csw[8..12].copy_from_slice(&residue.to_le_bytes());
csw[12] = status;
let _ = self.bulk_in.write(&csw).await;
}
}
#[repr(C, packed)]
#[allow(non_snake_case)]
struct CommandBlockWrapper {
dCBWSignature: u32,
dCBWTag: u32,
dCBWDataTransferLength: u32,
bmCBWFlags: u8,
bCBWLUN: u8,
bCBWCBLength: u8,
CBWCB: [u8; 16],
}
#[allow(non_snake_case)]
impl CommandBlockWrapper {
fn parse(buf: &[u8]) -> Option<Self> {
if buf.len() < 31 {
return None;
}
let dCBWSignature = u32::from_le_bytes(buf[0..4].try_into().ok()?);
if dCBWSignature != 0x43425355 {
return None; // invalid signature
}
Some(Self {
dCBWSignature,
dCBWTag: u32::from_le_bytes(buf[4..8].try_into().ok()?),
dCBWDataTransferLength: u32::from_le_bytes(buf[8..12].try_into().ok()?),
bmCBWFlags: buf[12],
bCBWLUN: buf[13],
bCBWCBLength: buf[14],
CBWCB: buf[15..31].try_into().ok()?,
})
}
}

View File

@@ -0,0 +1,159 @@
use num_enum::TryFromPrimitive;
/// THE CODE BELOW ORIGINATES FROM: https://github.com/apohrebniak/usbd-storage/blob/master/usbd-storage/src/subclass/scsi.rs
/// SCSI device subclass code
pub const SUBCLASS_SCSI: u8 = 0x06; // SCSI Transparent command set
/* SCSI codes */
/* SPC */
const TEST_UNIT_READY: u8 = 0x00;
const REQUEST_SENSE: u8 = 0x03;
const INQUIRY: u8 = 0x12;
const MODE_SENSE_6: u8 = 0x1A;
const MODE_SENSE_10: u8 = 0x5A;
/* SBC */
const READ_10: u8 = 0x28;
const READ_16: u8 = 0x88;
const READ_CAPACITY_10: u8 = 0x25;
const READ_CAPACITY_16: u8 = 0x9E;
const WRITE_10: u8 = 0x2A;
/* MMC */
const READ_FORMAT_CAPACITIES: u8 = 0x23;
const PREVENT_ALLOW_MEDIUM_REMOVAL: u8 = 0x1E;
const START_STOP_UNIT: u8 = 0x1B;
/// SCSI command
///
/// Refer to specifications (SPC,SAM,SBC,MMC,etc.)
#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive]
pub enum ScsiCommand {
Unknown,
/* SPC */
Inquiry {
evpd: bool,
page_code: u8,
alloc_len: u16,
},
TestUnitReady,
RequestSense {
desc: bool,
alloc_len: u8,
},
ModeSense6 {
dbd: bool,
page_control: PageControl,
page_code: u8,
subpage_code: u8,
alloc_len: u8,
},
ModeSense10 {
dbd: bool,
page_control: PageControl,
page_code: u8,
subpage_code: u8,
alloc_len: u16,
},
/* SBC */
ReadCapacity10,
ReadCapacity16 {
alloc_len: u32,
},
Read {
lba: u64,
len: u64,
},
Write {
lba: u64,
len: u64,
},
/* MMC */
ReadFormatCapacities {
alloc_len: u16,
},
PreventAllowMediumRemoval {
prevent: bool,
},
StartStopUnit {
start: bool,
load_eject: bool,
},
}
#[repr(u8)]
#[derive(Copy, Clone, Debug, TryFromPrimitive)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum PageControl {
CurrentValues = 0b00,
ChangeableValues = 0b01,
DefaultValues = 0b10,
SavedValues = 0b11,
}
#[allow(dead_code)]
pub fn parse_cb(cb: &[u8]) -> ScsiCommand {
match cb[0] {
TEST_UNIT_READY => ScsiCommand::TestUnitReady,
INQUIRY => ScsiCommand::Inquiry {
evpd: (cb[1] & 0b00000001) != 0,
page_code: cb[2],
alloc_len: u16::from_be_bytes([cb[3], cb[4]]),
},
REQUEST_SENSE => ScsiCommand::RequestSense {
desc: (cb[1] & 0b00000001) != 0,
alloc_len: cb[4],
},
READ_CAPACITY_10 => ScsiCommand::ReadCapacity10,
READ_CAPACITY_16 => ScsiCommand::ReadCapacity16 {
alloc_len: u32::from_be_bytes([cb[10], cb[11], cb[12], cb[13]]),
},
READ_10 => ScsiCommand::Read {
lba: u32::from_be_bytes([cb[2], cb[3], cb[4], cb[5]]) as u64,
len: u16::from_be_bytes([cb[7], cb[8]]) as u64,
},
READ_16 => ScsiCommand::Read {
lba: u64::from_be_bytes((&cb[2..10]).try_into().unwrap()),
len: u32::from_be_bytes((&cb[10..14]).try_into().unwrap()) as u64,
},
WRITE_10 => ScsiCommand::Write {
lba: u32::from_be_bytes([cb[2], cb[3], cb[4], cb[5]]) as u64,
len: u16::from_be_bytes([cb[7], cb[8]]) as u64,
},
MODE_SENSE_6 => ScsiCommand::ModeSense6 {
dbd: (cb[1] & 0b00001000) != 0,
page_control: PageControl::try_from_primitive(cb[2] >> 6).unwrap(),
page_code: cb[2] & 0b00111111,
subpage_code: cb[3],
alloc_len: cb[4],
},
MODE_SENSE_10 => ScsiCommand::ModeSense10 {
dbd: (cb[1] & 0b00001000) != 0,
page_control: PageControl::try_from_primitive(cb[2] >> 6).unwrap(),
page_code: cb[2] & 0b00111111,
subpage_code: cb[3],
alloc_len: u16::from_be_bytes([cb[7], cb[8]]),
},
READ_FORMAT_CAPACITIES => ScsiCommand::ReadFormatCapacities {
alloc_len: u16::from_be_bytes([cb[7], cb[8]]),
},
PREVENT_ALLOW_MEDIUM_REMOVAL => ScsiCommand::PreventAllowMediumRemoval {
prevent: (cb[1] & 0b00000001) != 0,
},
START_STOP_UNIT => ScsiCommand::StartStopUnit {
start: (cb[4] & 0b00000001) != 0,
load_eject: (cb[4] & 0b00000010) != 0,
},
_ => ScsiCommand::Unknown,
}
}

161
kernel/src/storage.rs Normal file
View File

@@ -0,0 +1,161 @@
use alloc::{string::String, vec::Vec};
use core::str::FromStr;
use embassy_rp::gpio::{Input, Output};
use embassy_rp::peripherals::SPI0;
use embassy_rp::spi::{Blocking, Spi};
use embassy_sync::blocking_mutex::raw::CriticalSectionRawMutex;
use embassy_sync::lazy_lock::LazyLock;
use embassy_sync::mutex::Mutex;
use embassy_time::Delay;
use embedded_hal_bus::spi::ExclusiveDevice;
use embedded_sdmmc::{
Block, BlockCount, BlockDevice, BlockIdx, Directory, SdCard as SdmmcSdCard, TimeSource,
Timestamp, Volume, VolumeIdx, VolumeManager, sdcard::Error,
};
use embedded_sdmmc::{File as SdFile, LfnBuffer, Mode, ShortFileName};
pub const MAX_DIRS: usize = 4;
pub const MAX_FILES: usize = 5;
pub const MAX_VOLUMES: usize = 1;
type Device = ExclusiveDevice<Spi<'static, SPI0, Blocking>, Output<'static>, embassy_time::Delay>;
type SD = SdmmcSdCard<Device, Delay>;
type VolMgr = VolumeManager<SD, DummyTimeSource, MAX_DIRS, MAX_FILES, MAX_VOLUMES>;
type Vol<'a> = Volume<'a, SD, DummyTimeSource, MAX_DIRS, MAX_FILES, MAX_VOLUMES>;
pub type Dir<'a> = Directory<'a, SD, DummyTimeSource, MAX_DIRS, MAX_FILES, MAX_VOLUMES>;
pub type File<'a> = SdFile<'a, SD, DummyTimeSource, MAX_DIRS, MAX_FILES, MAX_VOLUMES>;
pub static SDCARD: LazyLock<Mutex<CriticalSectionRawMutex, Option<SdCard>>> =
LazyLock::new(|| Mutex::new(None));
pub struct DummyTimeSource {}
impl TimeSource for DummyTimeSource {
fn get_timestamp(&self) -> Timestamp {
Timestamp::from_calendar(2022, 1, 1, 0, 0, 0).unwrap()
}
}
#[derive(Clone, PartialEq)]
pub struct FileName {
pub long_name: String,
pub short_name: ShortFileName,
}
pub struct SdCard {
det: Input<'static>,
volume_mgr: VolMgr,
}
impl SdCard {
pub const BLOCK_SIZE: u16 = 512;
pub fn new(sdcard: SD, det: Input<'static>) -> Self {
let volume_mgr = VolumeManager::<_, _, MAX_DIRS, MAX_FILES, MAX_VOLUMES>::new_with_limits(
sdcard,
DummyTimeSource {},
5000,
);
Self {
det: det,
volume_mgr,
}
}
/// Returns true if an SD card is inserted.
/// The DET pin is active-low via mechanical switch in the socket.
pub fn is_attached(&self) -> bool {
self.det.is_low()
}
pub fn size(&self) -> u64 {
let mut result = 0;
self.volume_mgr.device(|sd| {
result = sd.num_bytes().unwrap_or(0);
DummyTimeSource {}
});
result
}
pub fn num_blocks(&self) -> u32 {
let mut result = 0;
self.volume_mgr.device(|sd| {
result = sd.num_blocks().unwrap_or(BlockCount(0)).0;
DummyTimeSource {}
});
result
}
pub fn read_blocks(&self, blocks: &mut [Block], start_block_idx: BlockIdx) -> Result<(), ()> {
let mut res: Result<(), Error> = Ok(());
self.volume_mgr.device(|sd| {
res = sd.read(blocks, start_block_idx);
DummyTimeSource {}
});
res.map_err(|_| ())
}
pub fn write_blocks(&self, blocks: &mut [Block], start_block_idx: BlockIdx) -> Result<(), ()> {
let mut res: Result<(), Error> = Ok(());
self.volume_mgr.device(|sd| {
res = sd.write(blocks, start_block_idx);
DummyTimeSource {}
});
res.map_err(|_| ())
}
pub fn access_root_dir(&mut self, mut access: impl FnMut(Dir)) {
let volume0 = self.volume_mgr.open_volume(VolumeIdx(0)).unwrap();
let root_dir = volume0.open_root_dir().unwrap();
access(root_dir);
}
pub async fn read_file<T>(
&mut self,
name: &ShortFileName,
mut access: impl FnMut(File) -> T,
) -> Result<T, ()> {
let mut res = Err(());
self.access_root_dir(|root_dir| {
if let Ok(file) = root_dir.open_file_in_dir(name, Mode::ReadOnly) {
res = Ok(access(file));
}
});
res
}
/// Returns a Vec of file names (long format) that match the given extension (e.g., "BIN")
pub fn list_files_by_extension(&mut self, ext: &str) -> Result<Vec<FileName>, ()> {
let mut result = Vec::new();
// Only proceed if card is inserted
if !self.is_attached() {
return Ok(result);
}
let mut lfn_storage = [0; 50];
let mut lfn_buffer = LfnBuffer::new(&mut lfn_storage);
self.access_root_dir(|dir| {
dir.iterate_dir_lfn(&mut lfn_buffer, |entry, name| {
if let Some(name) = name {
let name = String::from_str(name).unwrap();
if name.contains(ext) {
result.push(FileName {
long_name: name,
short_name: entry.name.clone(),
});
}
}
})
.unwrap()
});
Ok(result)
}
}

188
kernel/src/ui.rs Normal file
View File

@@ -0,0 +1,188 @@
use crate::{
BINARY_CH,
display::{FB_PAUSED, FRAMEBUFFER},
elf::load_binary,
peripherals::keyboard,
storage::FileName,
};
use abi_sys::keyboard::{KeyCode, KeyState};
use alloc::{str::FromStr, string::String, vec::Vec};
use core::sync::atomic::Ordering;
use embassy_sync::{blocking_mutex::raw::CriticalSectionRawMutex, mutex::Mutex};
use embedded_graphics::{
Drawable,
mono_font::{MonoTextStyle, ascii::FONT_10X20},
pixelcolor::Rgb565,
prelude::{Dimensions, Point, Primitive, RgbColor, Size},
primitives::{PrimitiveStyle, Rectangle},
text::Text,
};
use embedded_layout::{
align::{horizontal, vertical},
layout::linear::{FixedMargin, LinearLayout},
prelude::*,
};
use embedded_text::TextBox;
pub static SELECTIONS: Mutex<CriticalSectionRawMutex, SelectionList> =
Mutex::new(SelectionList::new());
pub async fn ui_handler() {
loop {
if let Some(event) = keyboard::read_keyboard_fifo().await {
if let KeyState::Pressed = event.state {
match event.key {
KeyCode::Up => {
let mut selections = SELECTIONS.lock().await;
selections.up();
}
KeyCode::Down => {
let mut selections = SELECTIONS.lock().await;
selections.down();
}
KeyCode::Enter | KeyCode::Right => {
let selections = SELECTIONS.lock().await;
let selection =
selections.selections[selections.current_selection as usize].clone();
let entry = unsafe {
load_binary(&selection.short_name)
.await
.expect("unable to load binary")
};
BINARY_CH.send(entry).await;
}
_ => (),
}
}
}
let changed = SELECTIONS.lock().await.changed;
if changed {
clear_selection().await;
draw_selection().await;
}
}
}
pub async fn clear_selection() {
let sel = SELECTIONS.lock().await;
if let Some(area) = sel.last_bounds {
Rectangle::new(area.top_left, area.size)
.into_styled(PrimitiveStyle::with_fill(Rgb565::BLACK))
.draw(unsafe { &mut FRAMEBUFFER })
.unwrap();
}
}
async fn draw_selection() {
let mut guard = SELECTIONS.lock().await;
let file_names = &guard.selections.clone();
let text_style = MonoTextStyle::new(&FONT_10X20, Rgb565::WHITE);
let display_area = unsafe { FRAMEBUFFER.bounding_box() };
const NO_BINS: &str = "No Programs found on SD Card. Ensure programs end with '.bin', and are located in the root directory";
let no_bins = String::from_str(NO_BINS).unwrap();
FB_PAUSED.store(true, Ordering::Release); // ensure all elements show up at once
if file_names.is_empty() {
TextBox::new(
&no_bins,
Rectangle::new(
Point::new(25, 25),
Size::new(display_area.size.width - 50, display_area.size.width - 50),
),
text_style,
)
.draw(unsafe { &mut FRAMEBUFFER })
.unwrap();
} else {
let mut views: alloc::vec::Vec<Text<MonoTextStyle<Rgb565>>> = Vec::new();
for i in file_names {
views.push(Text::new(&i.long_name, Point::zero(), text_style));
}
let views_group = Views::new(views.as_mut_slice());
let layout = LinearLayout::vertical(views_group)
.with_alignment(horizontal::Center)
.with_spacing(FixedMargin(5))
.arrange()
.align_to(&display_area, horizontal::Center, vertical::Center);
// draw selected box
let selected_bounds = layout
.inner()
.get(guard.current_selection as usize)
.expect("Selected binary missing")
.bounding_box();
Rectangle::new(selected_bounds.top_left, selected_bounds.size)
.into_styled(PrimitiveStyle::with_stroke(Rgb565::WHITE, 1))
.draw(unsafe { &mut FRAMEBUFFER })
.unwrap();
guard.last_bounds = Some(layout.bounds());
layout.draw(unsafe { &mut FRAMEBUFFER }).unwrap();
}
guard.changed = false;
FB_PAUSED.store(false, Ordering::Release); // ensure all elements show up at once
}
#[derive(Clone)]
pub struct SelectionList {
// allows easy clearing of selection ui,
// based on previous bounds
last_bounds: Option<Rectangle>,
current_selection: u16,
selections: Vec<FileName>,
changed: bool,
}
impl SelectionList {
pub const fn new() -> Self {
Self {
last_bounds: None,
selections: Vec::new(),
current_selection: 0,
changed: false,
}
}
pub fn set_changed(&mut self, changed: bool) {
self.changed = changed
}
pub fn update_selections(&mut self, selections: Vec<FileName>) {
self.selections = selections;
self.changed = true;
}
pub fn selections(&self) -> &Vec<FileName> {
&self.selections
}
pub fn reset(&mut self) {
self.current_selection = 0;
self.changed = true;
}
fn up(&mut self) {
if self.current_selection > 0 {
self.current_selection -= 1;
self.changed = true;
}
}
fn down(&mut self) {
if self.current_selection + 1 < self.selections.len() as u16 {
self.current_selection += 1;
self.changed = true;
}
}
}

45
kernel/src/usb.rs Normal file
View File

@@ -0,0 +1,45 @@
use crate::{scsi::MassStorageClass, storage::SdCard};
use core::sync::atomic::{AtomicBool, Ordering};
use embassy_futures::select::select;
use embassy_rp::{peripherals::USB, usb::Driver};
use embassy_usb::{Builder, Config, UsbDevice};
pub static USB_ACTIVE: AtomicBool = AtomicBool::new(false);
#[embassy_executor::task]
pub async fn usb_handler(driver: Driver<'static, USB>) {
let mut config = Config::new(0xc0de, 0xbabe);
config.manufacturer = Some("LegitCamper");
config.product = Some("PicoCalc");
config.serial_number = Some("01001100");
config.max_power = 100;
config.max_packet_size_0 = 64;
let mut config_descriptor = [0; 256];
let mut bos_descriptor = [0; 64];
let mut control_buf = [0; 64];
let mut builder = Builder::new(
driver,
config,
&mut config_descriptor,
&mut bos_descriptor,
&mut [],
&mut control_buf,
);
let temp_sd: Option<SdCard> = None;
let mut scsi = MassStorageClass::new(&mut builder, temp_sd);
let usb = builder.build();
select(run(usb), scsi.poll()).await;
}
async fn run<'d>(mut usb: UsbDevice<'d, Driver<'d, USB>>) -> ! {
loop {
usb.wait_resume().await;
USB_ACTIVE.store(true, Ordering::Release);
usb.run_until_suspend().await;
USB_ACTIVE.store(false, Ordering::Release);
}
}

11
kernel/src/utils.rs Normal file
View File

@@ -0,0 +1,11 @@
#[macro_export]
macro_rules! format {
($len:literal, $($arg:tt)*) => {{
use heapless::String;
use core::fmt::Write;
let mut s: String<$len> = String::new();
let _ = write!(&mut s, $($arg)*);
s
}}
}